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Abstract

The zeroth and first laws of black hole mechanics are traditionally formulated in
terms of a class of stationary space-times containing event horizons. However,
this class of solutions is too restrictive to include a variety of physically inter-
esting situations. This thesis describes the extension of the zeroth and first laws
to a much broader class of space-times containing isolated horizons. A space-
time representing a black hole which is itself in equilibrium, but whose exterior
contains radiation, admits such a horizon. Using Hamiltonian techniques, quasi-
local definitions of the “extrinsic parameters” of a black hole — the quantities
which are related by the first law — are formulated for generic isolated horizons.
These definitions reveal a remarkable connection between the first law and the

classical Hamiltonian formalism.
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Chapter 1

Introduction

The analogy between the laws of black hole mechanics and those of ordinary thermody-
namics is one of the most remarkable results to emerge from classical general relativity
[1, 2, 3, 4, 5]. However, the traditional framework for these results depends critically on
certain structures which are not present in most cases of physical interest. This thesis
presents a different framework for the laws of black hole mechanics which is adapted to a
much broader class of situations.

The zeroth and first laws of thermodynamics apply to equilibrium situations and small
departures therefrom. By analogy, one expects the zeroth and first laws of black hole
mechanics should also apply to equilibrium configurations, i.e., to black holes which are
isolated from infalling matter and radiation. In standard treatments, isolated black holes
are generally represented by stationary solutions to the field equations which admit a time-
translational Killing fields everywhere in space-time, not just in a neighborhood of the black
hole itself. While this simple idealization is a natural starting point, it seems overly restric-
tive from a physical point of view. In particular, the global requirement of stationarity
does not admit radiation, gravitational or otherwise, anywhere in space-time. Physically, it
should be sufficient to impose local conditions which ensure only that the black hole itself is
isolated. That is, it should suffice to demand only that the intrinsic geometry of the black
hole be “time-independent,” whereas the geometry outside may be dynamical and admit
gravitational and other radiation. Indeed, the traditional viewpoint in ordinary thermo-
dynamics is very similar: when considering a classical gas, for example, one only assumes
the system under consideration is in equilibrium, not the entire universe. The prototypical
example of a black hole in equilibrium is that of the final stages of a gravitational collapse
where the black hole has already formed and “settled down.” In such situations, there
is likely to be gravitational radiation and non-stationary matter far away from the black

hole, whence the space-time as a whole is not expected to be stationary. Nevertheless, one
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expects black hole mechanics should incorporate such situations.

A second limitation of the standard framework for black hole mechanics lies in its de-
pendence on event horizons. Physically, these surfaces represent causal boundaries in space-
time through which light cannot escape to infinity. However, by their very definition, event
horizons can only be constructed retroactively, after knowing the complete evolution of
space-time. The difficulty with this picture is brought out by the example of figure 1.1
wherein a star of mass M initially undergoes a gravitational collapse and settles down to an
equilibrium state. The null surface A is like a causal boundary in space-time in the sense
that it is foliated by a family of marginally trapped 2-surfaces®. If nothing further happens,
Aq would be part of the event horizon of the black hole. But suppose instead, after a very
long time, a matter shell with mass § M collapses into the black hole. The black hole will
quickly settle down to a new equilibrium state described by the surface Ay and, assuming
nothing further happens, Ay will be part of the event horizon. However, if one continues the
event horizon backward, one will find it actually lies slightly outside the surface Ay. Thus,
although the equilibrium state A; may persist for a very long time (even by astro-physical
standards), it cannot be treated in conventional formulations of black hole mechanics. On
physical grounds, this exclusion seems unreasonable. Surely one should be able to establish
the standard laws of mechanics not only for the event horizon but also for Aj.

The key ingredient in the framework for black hole mechanics presented here is the
notion of an isolated horizon [6, 7, 8, 9, 10, 11]. An isolated horizon is defined as a null
surface in space-time at which certain boundary conditions hold. Most importantly, any
isolated horizon is foliated by a family of marginally trapped surfaces. An event horizon is
always an isolated horizon, but the later is a much more general concept. The key point is
that the definition of an isolated horizon is made locally, without reference to infinity, and
constrains only the geometry of the horizon itself. In particular, the surface Ay (as well as
Aj) in figure 1.1 is an isolated horizon. A number of other physically important examples
of isolated horizons will be given below.

In addition to overcoming the two limitations described above, the isolated horizon
framework provides a natural point of departure for quantization and entropy calculations
[12, 13]. In contrast, standard treatments of black hole mechanics are often based on

differential geometric identities and are not well-suited to quantization. The existence of

"Physically, a marginally trapped surface is a space-like 2-surface with the property that an outward-
bound light-front starting on the surface will not expand. In other words, light which travels radially outward
from one of the marginally trapped leaves of A; actually propagates along the surface A; itself. Any ray
originating on A; which does not travel radially outward propagates to the interior of A; in space-time.



M

Figure 1.1: A spherical star of mass M undergoes collapse. Later, a spherical
shell of mass § M falls into the resulting black hole. While A; and A5 are both
isolated horizons, only As is part of the event horizon.
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exact, non-perturbative, quantum calculations of the statistical entropy of isolated horizons
provides direct evidence of the physics underlying the analogy between black hole mechanics
and thermodynamics. In traditional treatments, this analogy is primarily supported by
Hawking’s celebrated, semi-classical result [5] on black hole radiance.

The above arguments illustrate how isolated horizons model a wider variety of black holes
in equilibrium than the standard stationary examples. At first, it may appear that only
a small extension of the standard framework is needed to formulate the laws of black hole
mechanics for more general isolated horizons. However, this is not the case. Without access
to globally defined Killing fields, even the definitions of many of the black hole’s “extrinsic
parameters” (mass, angular momentum, surface gravity, rotational velocity, etc.) present
significant challenges. For example, in the stationary context, one identifies black hole mass
with the ADM mass defined at spatial infinity. In the presence of radiation, this simple
strategy is no longer viable since radiation fields far from the black hole also contribute to
the ADM mass. To formulate the first law, a new definition of black hole mass is needed.
As a second example, consider the definition of surface gravity. In the stationary context,
every event horizon is generated by a Killing field which becomes null on the horizon surface;
the surface gravity is defined as the acceleration of that Killing field at the horizon. Now,
even if space-time admits such a horizon-generating Killing field in a neighborhood of the
horizon — already a stronger condition than that contemplated here — the notion of surface
gravity is ambiguous since constant rescalings of the Killing field change its acceleration.
When a global Killing field exists, the ambiguity is removed by normalizing the Killing field
through its properties at infinity. Thus, contrary to intuitive expectation, the standard
notion of surface gravity for a stationary black hole refers not just to the structure at
the horizon, but also to infinity. Similar problems occur with the definitions of angular
momentum, rotational velocity and, in the Einstein—-Maxwell case, electric potential. All of
these problems must be overcome for the laws of black hole mechanics even to be formulated,
much less proved. Fortunately, the isolated horizon boundary conditions allow a phase space
formulation of an isolated black hole and this formulation offers a great deal of guidance in
making the appropriate definitions. Apart from the conceptual problems mentioned here, a
host of technical issues must also be resolved in the phase space construction. In Einstein—
Maxwell theory, for example, the space of stationary Kerr—-Newman black hole solutions
is finite-dimensional whereas the space of solutions admitting isolated horizons is infinite-
dimensional. As a result, the introduction of a well-defined action principle is subtle and

the Hamiltonian framework acquires qualitatively new features.



This thesis is organized as follows. Chapter 2 recalls the traditional framework for black
hole mechanics. In particular, the notion of a Killing horizon, its relation to the zeroth law,
and the derivation of the first law in the stationary context are reviewed. The second law
is not discussed since it applies to dynamical, not equilibrium, situations and therefore lies
outside the scope of this thesis.

Chapter 3 introduces the boundary conditions which define a isolated horizon and dis-
cusses a number of examples. The primary focus in Chapter 3 is on Einstein—-Maxwell theory,
although some of the structure with more general matter fields is also explored. The con-
sequences of these boundary conditions which are relevant to the discussion of black hole
mechanics are derived in Chapter 4. In particular, the zeroth law of black hole mechanics
for general isolated horizons is established. The last part of Chapter 4 demonstrates the
existence of a preferred foliation of the horizon which will be useful in the following chapters.

Using the previous results, Chapter 5 formulates an action principle describing an
asymptotically flat space-time with an interior boundary at a single isolated horizon. It
uses a first-order action for general relativity in terms of a tetrad and a (real) Lorentz con-
nection. The action gives rise to a (covariant) phase space for the theory on which certain
Hamiltonian generating functions are constructed. Chapter 6 is devoted to the derivation
of the first law of black hole mechanics for isolated horizons in vacuum general relativity.
Angular momentum is defined for a class of horizons which admit an axial symmetry. The
energy of horizons in this same class is then defined, leading naturally to a generalized form
of the first law of black hole mechanics. The last part of Chapter 6 examines the structure
of the first law for isolated horizons more closely, revealing an intimate connection with the
phase space formalism. It also discusses the issue of picking the rest frame of an isolated
horizon, thereby defining its mass. The inclusion of the usual stationary solutions in the
isolated horizon formalism is also discussed here.

Chapter 7 contains a review of the results in the thesis. Appendix A extends the results
of Chapter 6 to include the electromagnetic field. Finally, since it is useful at a number of
points throughout our discussion, the Newman—Penrose formalism is reviewed in Appendix
B.

Throughout this thesis, tensor indices are supressed wherever doing so does not obscure
the results. Where space-time indices do appear, they are denoted by lower-case latin letters
(a,b,c,...). Internal frame indices are denoted by upper-case latin letters (/,.J, K,...). In
tensorial expressions where indices are supressed, the metric is used freely to convert covari-

ant tensors to contravariant and vice versa. The expression V _I w denotes the contraction
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of the vector field V into the first index of the differential n-form w. Finally, for symmetric,
covariant tensors of valence two such as the Ricci tensor R, the contraction of a vector field

V on one of its indices is denoted R(V').



Chapter 2

Classical Black Hole Mechanics

In this chapter, we review the traditional framework for black hole mechanics. We recall
Hawking’s area theorem [14] and Bekenstein’s realization [1, 2] of its analogy with the second
law of black hole mechanics. We then examine the proofs of the zeroth and first laws of
black hole mechanics using (a) the black hole uniqueness theorems and (b) the structure of
Killing horizons. We conclude this chapter with a brief critique of the traditional framework.
There exist a number of excellent reviews of this material in the literature [15, 16, 17]; the

presentation here is mainly for completeness.

2.1 EVENT HORIZONS AND THE AREA LAW

From a physical point of view, a black hole is a region of space-time from which gravitational
attraction prevents even light escaping. In asymptotically flat space-times, this notion is
represented mathematically as a region lying outside the causal past of future null infinity
[18, 15]. The boundary of such a region is known as the black hole’s event horizon . Note
that, by definition, the event horizon is a global construction; the entire space-time history
must be known before it can be found.

The event horizon 5 is a null hyper-surface in space-time which is generated by a family
of future-inextensible null geodesics without caustics [18, 19]. That is, the expansion of the
null congruence generating .3 cannot become negative infinity anywhere on .3#. This is the
essential fact in proving Hawking’s area theorem [14, 19]: the area of a black hole’s event
horizon can never decrease with time. Under the simplifying assumption that the generators
of the horizon are geodetically complete, a simple proof of this proposition can be made
as follows. The Raychaudhuri equation (see section 4.1) for an affinely parameterized null

geodesic congruence reads

3 [dH 1

a 502] = Uabgab - wabwab + Rab€a€b7 (21)
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where A is the affine parameter along the generator, £*, of the congruence, R, is the Ricci
tensor and 6, o, and w,p denote the expansion, shear and twist of £, respectively. In the
case where £ generates the event horizon, its twist automatically vanishes. Furthermore,
if one assumes the Einstein equations hold with matter satisfying the null energy condition
(T.pk?k> > 0 for all null £%), the right side of this equation is non-negative. Thus, 2.1 yields
a differential inequality which can be integrated to show

1 S 1 v A— /\0.

6(A) ~ 0(Xo) 2

(2.2)

It follows that, if 8(Ao) is negative anywhere on the event horizon, then #(\,) will tend to
negative infinity for some A\, < Ao + 2[—6(Xo)]~!. Thus, the expansion of the horizon must
be everywhere non-negative and it follows that the horizon area can never decrease with
time. In the case where £ is not geodetically complete, this argument breaks down since
the parameter A\, may never be reached. In this case, however, one can again show the
expansion 6 is always non-negative under the technical assumption that the space-time in
question is “strongly asymptotically predictable” [19, 18]. The details of this argument are
not central to the discussion here.

Hawking’s area law is remarkably similar to the second law of thermodynamics in that
each states a certain quantity cannot decrease in time. In thermodynamics that quantity
is the entropy, in general relativity it is the area of a black hole’s event horizon. At first,
the similarity may appear coincidental since the two laws arise in very different contexts:
the area law is a geometric theorem whereas the second law of thermodynamics arises from
statistical considerations. Nonetheless, motivated by the area law [14] as well as by earlier
work of Floyd and Penrose [20], Christodoulou and Ruffini [21] and Carter [22], Bekenstein
was led to propose [1] that the analogy should, in fact, be taken seriously and the statistical
entropy of a black hole identified with (some multiple of) its horizon area. Bekenstein
defended this proposition by noting that matter falling through the event horizon could
carry with it some statistical entropy, thereby decreasing the total entropy of the accessible
universe and violating the second law of thermodynamics. On the other hand, he reasoned,
the infalling matter would expand the area of the event horizon. By considering the example
of a small, spherical, semi-classical particle falling into a black hole, Bekenstein showed the
entropy of the black hole should increase by the ratio of the increase in its horizon area to
the square of the Planck length times a dimensionless constant of order unity. Consequently,
the statistical entropy of a black hole should be proportional to its area over the square of

the Planck length. Note that the appearance of Planck’s constant implies the statistical
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entropy of a black hole must be quantum mechanical in origin.

2.2 THE MECHANICS OF THE KERR-NEWMAN BLACK HOLE

If the area of a black hole measures its entropy, it is natural to ask which observables measure
its other thermodynamic properties. Bekenstein [1] analyzed this issue using formulas for the
Kerr—Newman class of charged, rotating black holes. He discovered there is a simple analog
of temperature for a black hole and derived two laws of black hole mechanics analogous to
the zeroth and first laws of thermodynamics. We review his construction here.

Before deriving the black hole results, let us recall the zeroth and first laws of thermody-
namics. The zeroth law simply states the temperature T of a body in thermal equilibrium
is uniform throughout the body. Note this law applies only to non-dynamical, equilibrium
states of a thermodynamic system. The first law, in contrast, applies to motions in the
space of equilibrium states of a system, known as the thermodynamic state space. It takes

the form of the differential identity
dFE =7TdS + W, (2.3)

where F is the energy of the system, 7' is its temperature, S is its entropy and W is a 1-form
on state space representing the work done on the system by external agents in the course of
changing its thermal state. Generally, W has the form W = 3" F; da?, where o/ are certain
quantities describing the state of the system and F; are the applied external “forces.” The
reason thermodynamics is such a useful tool is that it reduces the study of large, complicated
physical systems to a question of the behavior of a handful of macroscopic parameters.
Experimentally, one is seldom interested in the detailed internal dynamics of the system,
but rather in the behavior of its measurable bulk parameters. These quantities, known as
the extrinsic parameters of the system, are exactly those which appear in the first law. For
example, the extrinsic parameters of an ideal gas include its internal energy, temperature
and entropy as well is its volume (a! = V') and pressure (F; = —P). Moreover, the first law
implies only a subset of the extrinsic parameters can be taken as independent coordinates
on state space. For an ideal gas, specifying any pair of (F,T,S, P,V) determines its thermal
state. One is, however, free to pick any pair of independent variables one likes. The values of
the remaining extrinsic parameters can be determined in terms of the independent variables
using the first law.

In the case of black hole mechanics the critical point is that the geometry of a Kerr—

Newman black hole is completely determined by only three independent parameters. The
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metric for the Kerr-Newman solution is (in the standard Boyer-Lindquist coordinates ¢, r,

6 and ¢)

ds? — A a’sin? @ 42 2asin? O(r? + a? — A) dtdo + Eer
> 2 22 _ Ag2 220 A (24)
L xder 4 HO) ————— sin?fdg’
and its Maxwell potential is
A= —% (dt — asin? quﬁ) , (2.5)

where a := J/M is the angular momentum per unit mass of the black hole, @ is its electric

charge, and the functions A and ¥ are given by
Ai=r4+ad®+ GQ2 —2GMr and ¥ :=r?+a’cos?b. (2.6)

All of these solutions are stationary and axi-symmetric under the Killing fields d¢ and Jy,
respectively. The function A has two zeros at r4 = M £+ /M? — a? — (92, with the event
horizon located at r = r4. Using the metric 2.4, one easily finds the area of the horizon is
A = 4rn(ri + a*). Furthermore, the Killing field

a

_ 2.7
r2+ + a? (2.7)

€= 0,490, with Q=

is, at the horizon, tangent to its null geodesic generators. The quantity € is physically
interpreted as the rotational velocity of the black hole. In general, the vector field &, though
geodetic when restricted to the horizon, is not affinely parameterized and its acceleration s
defines the surface gravity of the black hole. Using the metric 2.4, it is straightforward to

calculate

7"_|_—GM
ri—l—az '

For the Maxwell field, note that the gauge of the vector potential is chosen such that it falls

Ve€ =1k with k= (2.8)

off to zero at infinity. Since the solution is stationary, the electric potential ® of the horizon
is well-defined and its value is

Qry

O:=—-¢ 1A= .
¢ ri—}—aQ

(2.9)

These quantities (area, rotational velocity, surface gravity and electric potential), together
with the three independent parameters (mass, angular momentum and electric charge) of

the Kerr—Newman solutions, form the complete set of “extrinsic parameters” for a black
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hole in Einstein—Maxwell theory. These are the parameters to which the laws of black hole
mechanics refer.

The derivation of the first law of of black hole mechanics in Bekenstein’s framework is
a simple exercise in differential calculus. The independent parameters of the black hole in
the calculations above are taken to be its mass M, angular momentum ratio ¢ = .J/M and
electric charge (). However, for our purposes it will be useful to replace the mass with the
geometric radius R of the horizon (i.e., A = 4w R?) and a with the angular momentum itself

in this list. The remaining “extrinsic parameters” can be written in terms of R, J and @) as

v~ VA G4 4GP - 2G.J
2GR RV(R* + GQ2)? + 4G22 (2.10)
o R -GAQ' 44 _Q R? + GQ?
2R13\/(R® + GQ?)2 + 4G22 R \/(RZ+GQ2)2 + 4G22

The mass M is a natural measure of the energy in a black hole system. Since the first law of
thermodynamics involves the gradient of the energy function, we seek an analogous relation
by varying the mass M within the class of Kerr—Newman black holes. It is straightforward
to calculate

K
SM = ——6A+Q6] +®50. 2.11
5 0A T J+ ®6Q (2.11)

This is the first law of black hole mechanics for electrically charged, rotating black holes.
We have already seen the entropy of a black hole is proportional to its area, so the analogy
between 2.11 and 2.3 suggests identifying its temperature with (some multiple of ) the surface
gravity. Using the explicit expression 2.10, we immediately find the zeroth law of black hole
mechanics: the surface gravity is constant over the horizon of a black hole in equilibrium.
Again, this is directly analogous to the zeroth law of thermodynamics.

Despite the two analogies, however, there is an apparent problem with the identifica-
tion of surface gravity with temperature for black holes. Since a classical black hole is a
perfect absorber, its thermodynamic temperature should always be zero and the surface
gravity clearly is not. To resolve this problem, recall Bekenstein’s calculations indicated
the statistical entropy of the black hole is inversely proportional to Planck’s constant, so by
2.11 its temperature should actually be identified with some multiple of Planck’s constant
times the surface gravity. Thus, the black hole’s temperature is always zero in the classical
limit where & — 0. Hawking’s famous result on black hole radiance [5] provides additional
support for this identification in the semi-classical regime. He finds a quantum field in a

black hole space-time will, to a static observer at infinity, appear to be in a thermal state
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with temperature 7' = hx/2mw. This explains why the results we have found here are often
called the laws of black hole mechanics, rather than of black hole thermodynamics (though
this second term is also used quite frequently). They are purely classical, geometric results
which have nothing to do with a statistical analysis of black hole systems. It is a remarkable,
and still largely mysterious, fact that the statistical properties of black holes in quantum
gravity seem to be reflected so clearly within classical general relativity. This property of
the laws of black hole mechanics is primarily responsible for the great deal of discussion

they have provoked over the past three decades.

2.3 KILLING HORIZONS AND BLACK HOLE MECHANICS

In light of the black hole uniqueness theorems [23, 24] which assert the only stationary,
axi-symmetric solutions of Einstein-Maxwell theory with regular event horizons are the
Kerr-Newman black holes, Bekenstein’s calculations are entirely satisfactory to establish
the laws of black hole mechanics in this context. However, at the time Bekenstein did this
work, those uniqueness theorems were not yet proved and, moreover, his results do not
allow more general matter fields. Bardeen, Carter and Hawking derived the same results [3]
using a different technique which applies to more general stationary black hole space-times.
It will be useful to review their constructions here.

Let us begin by recalling a number of definitions. First, a stationary space-time is one
with a one-parameter group of isometries generated by a Killing field ¢ which becomes unit
and time-like at infinity. Second, a space-time with a stationary Killing field ¢ which, in
addition, is hypersurface-orthogonal everywhere is said to be static. Third, a space-time is
axi-symmetric if it admits a one-parameter group of isometries which, at infinity, correspond
to rigid rotations. Fourth, a stationary, axi-symmetric space-time is circular if the 2-planes
orthogonal to both ¢ and the axial Killing field ¢ are everywhere integrable! (i.e., if the
space-time is foliated by 2-dimensional surfaces orthogonal to both ¢ and ¢). Finally, a
Killing horizon is a null surface ¥ whose generators coincide with the orbits of a one-
parameter group of isometries. Equivalently, there exists a Killing field which is normal to
J# , though it needn’t be null or hypersurface-orthogonal anywhere else in space-time.

The Kerr—Newman solutions, in particular, are circular and their event horizons are
Killing horizons under the isometries along & defined by 2.7. This situation is actually much

more common than one might expect at first. The rigidity theorems of Hawking [19] and

'This property is also known as the “t-¢ orthogonality property” in the literature [17].
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Carter [4] imply the event horizons of stationary black holes are generically Killing horizons.
Hawking’s proof proceeds by assuming the Einstein-Maxwell equations are satisfied with no
other matter present in space-time and shows the event horizon of any stationary, but non-
static, black hole must be generated by a second, linearly independent Killing vector field.
Additionally, Hawking’s results indicate that stationary black hole solutions in Einstein—
Maxwell theory must also be axi-symmetric (though not necessarily circular). Carter’s
proof, on the other hand, does not make use of the field equations for general relativity
but applies only to static or circular black hole space-times. His results indicate the event

horizon is generated by a unique combination of the two Killing fields,
E=1+4+Q0, (2.12)

with € constant over the horizon. As before, € is interpreted as the angular velocity of the
horizon. The two proofs complement one another. Hawking’s theorem applies to general
stationary black holes, but uses the Einstein-Maxwell equations, while Carter’s uses no
field equations but assumes circularity. However, the physical content of their results is
unambiguous: physically interesting stationary black holes have Killing horizons. This is
a particularly important result since the proofs of the laws of black hole mechanics we are
about to examine depend on the Killing horizon structure.

Consider a Killing horizon ¢ generated by a Killing field &. The surface gravity of 2
is defined in terms of £ just as in 2.8. Since & is a Killing vector, this definition can be

rewritten in a number of equivalent forms, but one which is particularly useful here is

Vel=kE & d(E-&)=—2ke. (2.13)

It follows immediately from the second expression here that the surface gravity is always
constant along each generator of a Killing horizon. To prove the zeroth law of black hole
mechanics, one must show it is also constant from one generator to another. Bardeen,
Carter and Hawking did this by assuming the Einstein equations hold with general matter
satisfying the dominant energy condition which asserts that the vector —7'(k) is causal (i.e.,
future-directed and either time-like or null) for any causal vector k. The first step of their

proof is to show using only differential geometry that
ENdr ==& A R(E), (2.14)

where the 1-form R(§) is the Ricci tensor contracted on one index with the vector £ and the

metric is used to convert the vector £ to a 1-form. Then, one uses the Einstein equations and
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the dominant energy condition to show R(&) is proportional of &, so the right side of 2.14
vanishes. The zeroth law then follows immediately. As with the rigidity theorems, Carter
[4] independently established the zeroth law for any static or circular black hole space-time
without any reference to field equations.

Bardeen, Carter and Hawking’s proof of the first law takes place in two steps. The first
is to derive an integral mass formula which expresses the mass of a black hole in terms
of several of its other parameters. They consider the identity V2K = —2R(K) where V2
denotes the Laplacian operator on space-time and K is any Killing vector. Integrating this
identity over a partial Cauchy slice M which intersects the horizon in a 2-sphere S, and

extends to a 2-sphere S, at spatial infinity yields?
}1{ «dK + ¢ *dK = 87G / #(20(K) = Te [T K ), (2.15)
o S M

where * denotes the Hodge dual operation on space-time and the Einstein equations have
been used in the bulk integral. With certain choices of the Killing field, the surface integrals
at infinity can be identified with various physical quantities. In particular, the surface
integral at infinity for a stationary Killing field ¢ is proportional to the total mass of space-
time and that for an axial Killing field ¢ is proportional to the total angular momentum.

The exact relations are given by the Komar integrals [18]

1 1
= dt d J = deo. 2.1
srG Js, and =G fgm *de (2.16)

(Note the factor of —2 difference between the mass and angular momentum integrals.) The
identity 2.15 also contains surface terms at the horizon which again can be expressed in
terms of physical quantities describing the black hole. Specifically, if & = ¢t + Q¢ is the

horizon-generating Killing field, we have

-1
2kA = *xd& and Jop

- d 2.17
S 167G Js,, ¥4 (2.17)

where xk and A are the surface gravity and area of the horizon, respectively, and J, can
be interpreted as the angular momentum of the horizon. (The relative sign between the
angular momenta defined by 2.16 and 2.17 is due to orientations; S is an inner boundary

of M.) As one would expect, the angular momenta J and Jz generally are not equal.

2The orientation on Sy used here is induced by its spatial normal pointing outward from M, or into
the horizon. This orientation is chosen to comply with the conventions used in the discussion of isolated
horizons. The opposite orientation is often used in the literature.
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Indeed, 2.15 shows their difference is given by an integral over M which is interpreted as
the angular momentum contained in matter fields outside the horizon.

We are now in a position to derive two integral mass formulae. The first, due to Bardeen,
Carter and Hawking [3], arises by applying 2.15 to the Killing field K =t and the second,
which is also well known [16], by choosing K = &:

M= % 20 — /M «(27(1) - Te[171) (2.18)
and
M = R 207 — / (27(¢) - Te [17¢). (2.19)

In the vacuum case, the bulk integrals in each of these formulae vanish and .JJ = J;, whence
each reduces to the mass formula found by Smarr [25] via explicit calculation with the Kerr
solutions. The Einstein—-Maxwell case, however, is a bit more complicated. It turns out the

Maxwell stress-energy tensor T is trace-free and satisfies the identity
8rx T(W) = (W) A+ — (W 1 «F) AT, (2.20)

where [ is the Maxwell field strength, W is any vector field on space-time and _I denotes
its contraction into the first index of a differential form. Thus, when W = K is a Killing
vector which Lie drags the Maxwell potential A as well, the bulk integral in 2.15 can be

rewritten as
/ +(2T(K) - Tr[T]K) = —/ [(K_JA)*F + A A (K J <)), (2.21)
M

Using Stokes’ theorem, the right side of this expression yields a pair of surface integrals and,
moreover, the term at infinity vanishes because the Maxwell potential falls off to zero there.
When K = £, the horizon integral can be expressed as the product of the electric charge
and electric potential of the horizon. Thus, 2.19 yields a Smarr-like formula which includes
a contribution from the Maxwell field. That contribution physically represents the energy
contained in the electric field outside the horizon and should be included in the mass M
measured at infinity. For the case where K = ¢, one breaks the horizon integral from 2.21
into two pieces arising from the decomposition of ¢ into its components along £ and ¢. The
piece associated with &, as before, represents the energy in the Maxwell field outside the
horizon. The piece associated with ¢, by analogy, should represent the angular momentum

carried by the Maxwell field outside the horizon. Indeed, using 2.21 in 2.15 with K = ¢,
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one finds

J:Jﬁ—ﬁfiﬁ(qﬁJ A)+T, (2.22)
where we have assumed ¢ is tangent to Sz . It may seem surprising at first that the angular
momentum of the bulk Maxwell field can be encoded in a surface integral at the horizon.
However, the situation is directly analogous to the bulk electro-static energy being encoded
in the surface term ®@); both arise due to the “rigidity” imposed on the problem by the
presence of Killing fields. Finally, using the relation 2.22, the mass formula 2.18 reduces
to the same Smarr-like expression found from 2.19. Note the angular momentum in this
Smarr formula is measured at infinity.

The second step to Bardeen, Carter and Hawking’s proof of the first law of black hole
mechanics consists of varying 2.18 within the class of stationary black hole solutions and
using differential geometry to evaluate the terms involving §x and §€2. The later calculations

are rather long [3, 16] and so will not be reproduced here, but one ultimately finds the

differential mass formula
K 1
M= A+ Q6T+~ [ (T, t—5/ (). 2.2
S 0A+ Q45 [ (TMgu)t = [ w1t (223)

For a wide variety of matter fields, the bulk integrals here can be calculated in terms of
certain “extrinsic parameters” of the black hole to yield the first law. In the Einstein—
Maxwell case, in particular, the bulk integrals will yield two terms. The first will be the
electro-static “work” term ® () appearing in the first law 2.11 derived by Bekenstein. The
second will encode the work done by changing the angular momentum of the bulk Maxwell
field. It can be calculated as Q6(.J —.J) and, with this result, the differential mass formula
2.23 reduces to the standard first law 2.11 in the Einstein-Maxwell case. Note the mass

and angular momentum in this expression are those measured at infinity.

2.4 SUMMARY AND CRITIQUE

As we have seen in this chapter, there exist a set of laws of black hole mechanics which
are closely analogous to the ordinary laws of thermodynamics. While the former arise as
geometric identities in general relativity, the later are due to the statistical properties of
complex systems. This fact makes the analogy all the more intriguing. However, even
the simplest analyses of the statistical entropy of a black hole imply it must originate in
quantum mechanics. On the other hand, it seems unlikely the geometric arguments used

to construct the laws of black hole mechanics could easily be carried over to a theory of
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quantum gravity; they depend too much on the structure of certain smooth, stationary
space-times. It is therefore of considerable interest to find a formulation of black hole
mechanics which is more amenable to quantization.

Even from the viewpoint of classical physics, the formulation of black hole mechanics in
terms of stationary space-times is severely limited. Several of these limitations have been
discussed already in the Introduction. They center around the problem that physically
realistic black-hole space-times are not expected to be stationary. Consider, as an example,
the situation depicted in figure 2.1 wherein a star undergoes gravitational collapse to form
a non-rotating black hole. One expects the early stages of the collapse will produce a large
amount of gravitational and other radiation. Eventually, however, an event horizon will
form and it will grow to enclose the entire star. At first, some of the radiation from the col-
lapse may scatter back through the event horizon, but numerical calculationssuggest these
back-scattering effects will be rather short-lived and the horizon will quickly settle down to
an equilibrium state. That is, during the late stages of its evolution, corresponding to the
region A of the horizon in the figure, the black hole will be isolated from infalling radia-
tion. Nevertheless, there are fundamental obstructions to the application of the traditional
framework for black hole mechanics to this situation. Specifically, the mass arising in 2.15
is explicitly evaluated at infinity; it represents the total mass of space-time. It therefore
includes the black hole mass and the energy contained in radiation which propagates out
to null infinity and has nothing to do with the final state of the black hole. A second
problem which was discussed in the Introduction has to do with the definition of surface
gravity. Since it is a null surface, A is still generated by some null vector field ¢. However,
since £ is null, it can be freely rescaled by an arbitrary (positive) function on A, whence
its acceleration — the putative surface gravity — is not uniquely defined. Even if £ can
be extended to a static Killing field in a space-time neighborhood of A, that Killing field
is defined only up to an overall, constant rescaling. Once again, the surface gravity is not
unique. These problems indicate the standard framework must be extended to allow for
physically reasonable situations such as in figure 2.1.

One such extension has previously been formulated by Iyer and Wald [26, 27]. Their

calculations consider an arbitrary theory of gravity defined by a Lagrangian of the form

L= L(gab; Rabcd7 VmRabcd7 cees ¢7 Vmwa .- ')7 (224)

where R,p.q is the Riemann curvature of the connection V,, associated with ¢,; and ¥ de-

notes any matter fields in the theory. Consider a stationary black hole solution to the field
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13

Figure 2.1: A star collapses to form a (non-rotating) black hole. The portion
A of the event horizon at late times is isolated. The space-time M of interest is
the triangular region bounded by A, .#* and a partial Cauchy slice M.
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equations of this theory and an arbitrary (i.e., not necessarily stationary) variation thereof.
Using general (multi-)symplectic techniques in field theory, they construct a formula for the
entropy of the black hole and show it satisfies the first law of black hole mechanics under
arbitrary variations. Note that to make this extension of the first law meaningful, one must
carry the definitions of entropy and the other “extrinsic parameters” over to the varied so-
lutions which themselves are only approximately stationary. Wald and lyer accomplish this
by exploiting certain properties of the bifurcation surface® in the unperturbed, stationary
solutions. Their extension of the first law rests on the construction of the Noether charge
corresponding to a diffeomorphism along the horizon-generating Killing field. The Noether
charge is, by definition, the surface term in the Hamiltonian generating infinitesimal diffeo-
morphisms along that Killing field. That Hamiltonian has surface terms both at the horizon
and at infinity, but its bulk terms vanish as usually is the case in generally covariant theo-
ries. Iyer and Wald interpret the surface term at infinity as the mass of the black hole and
the term at the horizon is related to the entropy of the black hole. The first law then follows
from a general identity involving the Noether charge and the (multi-)symplectic potential.

Iyer and Wald’s results are very nice in that they extend the laws of black hole me-
chanics to an arbitrary theory of gravity and allow for non-stationary variations. Moreover,
their close relation to the Hamiltonian formalism for field theory suggests the possibility of
adapting them to the quantum case through canonical quantization. On the other hand,
the background space-times in this formalism must still be stationary and, as before, black
hole mass is calculated at infinity. One can argue the asymptotic final state of a black hole
should be approximately stationary and therefore that these restrictions are not physically
relevant. But there exist observables — such as the energy radiated through null infinity —
which are manifestly finite in cases like that of figure 2.1, but which vanish in all stationary
solutions. The existence of such observables make it unclear in what sense that black hole
is approximately stationary.

The discussion of this section suggests a number of features one would like to incorporate

3 A bifurcate Killing horizon consists of a pair of Killing horizons which (a) are generated by the same
Killing field on space-time and (b) intersect in a two-dimensional space-like surface %. The surface % is
known as the bifurcation surface. It has been shown [28] that each stationary black hole space-time whose
event horizon (a) is a Killing horizon, (b) has compact cross-sections and (c) has non-zero surface gravity
can be globally extended to a new stationary space-time admitting a bifurcate Killing horizon. Moreover,
the image of the event horizon in the original space-time is a proper subset of the bifurcate Killing horizon
in the extended space-time. Since the equations of motion are not used in this proof, it supports the view
that stationary black holes generically possess bifurcate horizons in arbitrary theories of gravity. Without
recourse to the equations of motion, however, note the black hole’s event horizon is only known to be a
Killing horizon when space-time is either static or circular [4].
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in a formulation of the laws of black hole mechanics. First, it seems necessary to replace
the requirement of stationarity with something less restrictive in order to accommodate a
broader class of physically realistic space-times such as those of figures 1.1 and 2.1. One seeks
space-times describing isolated black holes which are not necessarily globally stationary.
Second, to formulate the laws in this broader context, a definition of black hole mass should
be made which does not include contributions due to radiative fields far from the horizon.
Intuitively, one expects such a definition would have to be (quasi-)local to the horizon.
Third, it would be highly desirable for the formulation to make contact with quantum
mechanics. From a purely classical point of view, a first step in this direction would be
to have a canonical (i.e., symplectic or phase space, rather than geometric or space-time)
picture of the classical theory. These are the motivating principles underlying the notion of
an isolated horizon. We shall see in the following chapters that all of these properties are

realized in that framework.



Chapter 3

Isolated Horizons

In this chapter we specify the boundary conditions which define an isolated horizon and
examine a number of examples. As explained in the Introduction, the purpose of these
conditions is to model the essential features of the event horizon of a stationary black
hole using only the intrinsic structure available at the horizon. In particular, we make no

reference either to infinity or to a stationary Killing field.

3.1 DEFINITION

An isolated horizon consists of a pair (A, [f]), where A is a three-dimensional submanifold®
of space-time and [{] is an equivalence class of vector fields on A defined up to an overall,
positive rescaling:

¢~ {"=cl with ¢ a positive constant. (3.1)

The physical fields must satisfy the following boundary conditions at A:

(I) A is null and [¢*] lies along its future-directed null normal.

(IT) A is expansion-free.

This condition implies any representative £ € [¢] is a symmetry of the intrinsic horizon

geometry in the sense

Z1q=0, (3.2)

'In this thesis, we only consider isolated horizons with topology S? x R since one expects black holes
arising from gravitational collapse to be of this type. However, this restriction can be lifted. In particular, the
analysis presented here should extend, virtually unchanged, to isolated horizons with compact cross-sections
of higher genus. The extension to horizons with non-compact cross-sections (such as certain acceleration
horizons) or with more complicated topology (such as those with NUT charge which have the S3 topology)
may be somewhat more subtle. These extensions will be discussed elsewhere.

21
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where ¢ = ¢ is the pull-back of the space-time metric to A. This consequence of the
-
boundary conditions will be discussed in more detail in the next chapter, but bears

mentioning here since it motivates the next condition.

(II1)  Any representative £* € [(*] is a (partial) symmetry of the space-time connection at

A in the sense

L (VxY) = Vg xY - Vx(LY) =0, (3.3)

where X and Y are arbitrary vector fields tangent to A.

(IV) The equations of motion hold at A.

This includes all components, not just the pull-backs to A, of all the coupled gravity-

matter field equations.

(V) Any matter fields present at the horizon satisfy conditions such that the following two

properties are guaranteed:

Va. The vector k := —T({) is causal, i.e., future-directed and either time-like or null.

This is a mild energy condition which restricts the types of matter present at the

horizon.

Vb. The total gravity-matter action must be differentiable.

This is a restriction on the boundary conditions which may be applied to those

matter fields at A.

The only matter explicitly considered in this thesis is the Maxwell field. We will see
below that the stress-energy tensor of the Maxwell field satisfies condition Va. We

will also see the property Vb is guaranteed by the following boundary condition:

(VMax) Any £ € [{] Lie drags the intrinsic Maxwell connection A.

The constituent elements (A, [f]) of an isolated horizon mimic the intrinsic structure
available on a Killing horizon. Recall a Killing horizon has the property that its null normal
can be scaled to coincide with a Killing vector in space-time. However, the normalization
of that Killing field cannot be fixed through its properties at the horizon alone and, in the
context of stationary black holes, one must refer to infinity to fix it uniquely. However,
even if the scaling is not unique, the ambiguity is relatively tame: a Killing vector can be

rescaled at most by a constant. Thus, a Killing horizon generically has the property that its
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null normal can be fixed up to an overall constant rescaling by demanding it agree with a
Killing field. From a purely geometric point of view, this shows the intrinsic structure of a
Killing horizon consists of a three-dimensional manifold and a vector field on that manifold
fixed only up to constant rescalings. We have carried this essential structure over to the
definition of an isolated horizon. The purpose of boundary condition I, then, is to tie the
isolated horizon structure to the causal structure of space-time in much the same way as
in the case of a Killing horizon. Note, however, that a generic isolated horizon is not a
Killing horizon; £ € [{] generally cannot be extended to a Killing vector in any space-time
neighborhood of A. Nevertheless, it will be useful to keep this intuitive analogy in mind
during the discussion of the remaining boundary conditions to follow.

Since our goal is to model an isolated, non-dynamical black hole, the reasoning behind
condition II is straightforward. It simply asks that the horizon geometry — and, in par-
ticular, its area — be “time-independent.” In this sense, condition II incorporates the idea
that the horizon is isolated without assuming the existence of a Killing field. We will denote
the area of the horizon by Aa and its geometric radius by Ra (i.e., Ax =: 47R3). Both
are independent of the cross-section of the horizon used in their evaluation.

Condition III is somewhat more subtle than the first two. First, for motivation, let us
consider the case where (A, [f]) is actually a Killing horizon. When ¢ € [¢] can be extended
to a Killing field in a space-time neighborhood of A, that extension must also be a symmetry
of the space-time connection derived from the metric. Mathematically, this means 3.3 would
apply for all space-time vector fields X and Y in a neighborhood of A. For a generic isolated
horizon, £ cannot be so extended. In this context, condition III requires that [¢] still be
a symmetry of the connection at A, though in a more limited sense. In particular, 3.3
is only imposed at A, and then only for vector fields X and Y which are tangent to A.
In a sense, the situation here is similar to that normally encountered at infinity where
asymptotic expansions are used to enforce symmetries on the physical degrees of freedom
“up to a certain order.” As mentioned previously condition II implies the horizon metric
is symmetric along /, a “zeroth-order” symmetry. Condition III extends that symmetry to
first-order derivatives of the metric at the horizon.

A second property of condition III has to do with the geometric significance of the
equivalence class [f]. A generic null hypersurface A does not come equipped with an equiv-
alence class of vectors under constant rescalings such as [¢]. Instead, the future-directed

null normal is defined up to rescalings by arbitrary positive functions on A:

(~ 0= fl with f>0. (3.4)
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We shall denote this equivalence class of all null normal fields by {¢}. On a Killing horizon,
the more restricted class [(] C {¢} is singled out by the group of isometries of space-time.
However, this strategy will not work for a generic isolated horizon space-time which may
admit no Killing vectors. This raises the question of how one singles out the equivalence
class [f] geometrically on an isolated horizon. The answer lies in condition III. All of the
other boundary conditions (with the exception of the Maxwell field condition Vygay, see
below) are independent of the choice of £ € {¢}, but condition III is not. One can use 3.3 to
analyze the question of whether the isolated horizon structure (A, [f]) of a given horizon is
unique. In other words, given an isolated horizon (A, [¢]), does there exist a non-constant,
positive function f on A such that (A, [f/]) is again an isolated horizon? The answer is
almost always in the negative [10] — the isolated horizon structure is generically unigue. In
particular, the event horizon of a Kerr—Newman black hole is an isolated horizon if and only
if [£] is chosen to agree with the horizon-generating Killing field as one might expect. Note
that a generic null surface A, even if it satisfies all our boundary conditions but condition
I, may not admit a single isolated horizon structure. Work is in progress to identify some
additional conditions which would guarantee the existence of an isolated horizon structure
on such a surface. Luckily, the discussion of black hole mechanics is completely independent
of this issue.

Condition IV is a typical dynamical boundary condition, completely analogous to that
usually imposed at null infinity. Any set of boundary conditions must at least be consistent
with the equations of motion at the horizon. Here, we simplify matters by considering only
those histories where the equations of motion are satisfied at A from the outset. It may be
possible to weaken this condition somewhat, e.g., by requiring only the pull-backs of the
equations of motion at A. However, the exact form of a weaker version of this condition
would be fairly delicate since different, but equivalent, formulations of the bulk equations
of motion can have inequivalent sets of consequences when pulled-back to A. To avoid this
subtlety, we have chosen simply to demand the full equations of motion, though only at the
the points of A.

Finally, condition V gives the general principles which apply to incorporating matter
fields at an isolated horizon and condition Vy1a.x specializes these principles to the case of
a Maxwell field. The first general principle, condition Va, is a very weak energy condition.
In particular, it follows immediately from the (much stronger) dominant energy condition
which demands that —7'(k) be causal for any casual vector k. As we discussed in the

previous chapter, the dominant energy condition is assumed by the usual derivations of the
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laws of black hole mechanics in the stationary context. Furthermore, since the Maxwell
field satisfies the dominant energy condition, it satisfies condition Va as well. The second
general principle, condition Vb, is closely tied to our use of the Hamiltonian formulation
in deriving the horizon mass in the following chapters. One is generally free to satisfy
this condition any way one sees fit, though some choices may be better than others. In
the Maxwell case, condition Vyax is highly desirable from a geometric perspective since
requires the electromagnetic connection to admit the same symmetry along [¢] as the space-
time connection. We will also see below that condition Vi, is sufficient to guarantee the
differentiability of the action required by condition Vb.

We conclude this section with a remark concerning the application of these boundary
conditions to specific classes of black holes. The form of the boundary conditions given here
represent the most general definition of an isolated horizon. In practice, one may want to
model isolated horizons which correspond to specific classes of stationary black holes with
certain additional symmetries. In such cases the conditions given here may be supplemented
by additional conditions which implement the specific symmetries desired. Later in this
thesis, since we will be concerned with isolated horizons analogous to the Kerr—Newman
black holes, we will consider isolated horizons with a specific axial symmetry. In previous
papers [6, 7], we considered the analogs of Reissner—Nordstrom holes. There, we imposed
conditions guaranteeing the spherical symmetry of the metric and of the electro-magnetic

flux densities at the horizon as befit the situation we were modelling.

3.2 EXAMPLES

It is easy to check that any Killing horizon is an isolated horizon when [{] is defined using
the horizon-generating Killing field. In particular, the event horizon of a Kerr—Newman
black hole is an isolated horizon when [f] is defined in the usual way. One can define
similar stationary black holes in space-times with non-zero cosmological constant and, again,
their event horizons are naturally isolated horizons. Finally, it has been shown [7] that
cosmological horizons in de Sitter space-time are also isolated horizons. These examples
represent the bulk of the cases usually considered in the stationary framework for black hole
mechanics. Thus, the isolated horizon framework will incorporate the known results.
Isolated horizons are also much more general than the traditional, globally stationary
black hole event horizons. Consider the spherical collapse of figure 2.1. Physically, one

expects the geometry near the horizon A at asymptotically late times to be (approximately)
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isometric to a stationary solution, though the geometry far away will describe gravitational
radiation propagating toward infinity. It follows that A will be an isolated horizon. Likewise,
one expects the surfaces Ay and Ay in figure 1.1 will be isolated horizons on similar physical
grounds. More rigorously, an infinite-dimensional space of examples can be constructed
by starting with Killing horizons and “adding radiation.” To be specific, consider one
asymptotic region of a stationary black hole space-time and a partial Cauchy surface M
therein. The idea is to define a new set of initial data on this slice which, however, agrees
with the original set in some compact neighborhood of the horizon. In the Einstein—-Maxwell
case, one can accomplish this using the strategy introduced by Cutler and Wald [29] in their
proof of existence of solutions with smooth null infinity. By this technique, one constructs a
space-time region M bounded by M, A and a second partial Cauchy slice M’ to the future
of M in which A is an isolated horizon (see figure 3.1). Due to the presence of radiation, M
will not admit any global Killing field, though it will admit at least the horizon-generating
Killing field in a neighborhood of A.

We now construct a family of space-times containing isolated horizons which are not
generated by (local) Killing fields. Currently, these examples exist only in the non-rotating
context, though work is under way to extend this construction to the rotating case [10]. In
this limited context, however, an infinite-dimensional space of such horizons can be con-
structed using Friedrich’s results [30], and Rendall’s extension [31] thereof, on the null initial
value formulation (see figure 3.2) of general relativity. In this framework, one considers two
null hypersurfaces, A and ./", which intersect in a 2-sphere S (see figure 3.2). One chooses
a null tetrad (¢,n, m,m) in a neighborhood of these surfaces such that £ and n are normal
to A and .47, respectively. Using this tetrad, one can contemplate the Newman—Penrose
formulation (see Appendix B) of the gravitational field equations in a space-time neigh-
borhood of A and .#". In a suitable choice of gauge [30], the free data for the vacuum
Einstein equations consists of ¥y on A, ¥4 on .4, and the intrinsic metric % as well as
the Newman—Penrose coefficients A, o, m, Re[u] and Re[p] on the two-sphere S. Given
these fields, there is a unique solution (modulo diffeomorphisms) to the vacuum Einstein
equations in a neighborhood of S bounded by (and including) the appropriate portions of
A and A", If weset ¥g=0o0on A and p =0 =0 on 5, we guarantee all the isolated horizon
boundary conditions but condition III will hold on A. In the non-rotating context [7, 9],
we require further that 7 = 0 on S (see 4.28), thereby guaranteeing boundary condition III
as well. Lewandowski has shown [32] that, in the resulting solution, A is a non-rotating

isolated horizon. Note that W, need not vanish anywhere in the space-time region rele-
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Figure 3.1: A space-time M with an isolated horizon A as internal boundary
and radiation field in the exterior can be obtained by starting with an asymptotic
region of a stationary black hole space-time and modifying the initial data on the
partial Cauchy surface M. While the new metric continues to be isometric with
the original metric in a neighborhood of A it admits radiation in a neighborhood
of infinity. The dashed lines refer to the original asymptotic region.

Figure 3.2: Space-times with isolated horizons can be constructed by solving
the characteristic initial value problem on two intersecting null surfaces, A and
A, The final solution admits A as an isolated horizon. Generically, there is
radiation arbitrarily close to A and no Killing fields in any neighborhood of A.
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vant to this construction. Thus, in the vacuum case, there is an infinite-dimensional space
of (local) solutions admitting non-rotating isolated horizons at A. One can show, in this
setting, that there always exists a vector field € in a neighborhood of A which lies along
the null normal to the horizon and satisfies % ¢ = 0 (note the metric is not pulled back
to A). However, the Weyl curvature of the metric g is generally not Lie dragged along &,
even at the horizon itself. Thus, £ cannot be a Killing field for the space-time metric in any
neighborhood of A. (See [32] for details.) The Robinson-Trautman space-times provide
an interesting class of exact solutions which bring out this point [33]: a sub-class of these
solutions admit an isolated horizon, but no Killing fields whatsoever. There is radiation in
every neighborhood of the isolated horizon in these solutions. However, in a natural chart,
the metric coefficients and several of their radial derivatives evaluated at A are the same
as those of the Schwarzschild metric at its event horizon.

The constructions depicted in figures 3.1 and 3.2 are complementary. The first defines
a space-time which extends from the isolated horizon to infinity, but in which there is no
radiation in a neighborhood of A. The second, on the other hand, constructs only a space-
time neighborhood of the horizon, but allows arbitrary radiation fields near or even at the
horizon, provided there is no flux acress the horizon, of course. We expect there will exist
an infinite-dimensional space of solutions to the vacuum Einstein equations (as well as to
the Einstein-Maxwell equations) which are free from both limitations. In other words, these
solutions will extend to spatial infinity and admit isolated horizons with radiation arbitrarily
close to them. However, a comprehensive treatment of this issue will be technically difficult.
Given the current status of global existence and uniqueness results in the asymptotically flat
context, the present limitations are not surprising. Indeed, the situation at null infinity is
somewhat analogous: while the known techniques have provided several interesting partial
results, they do not yet allow us to show there exists a large class of solutions to Einstein’s
vacuum equations which admit complete and smooth past and future null infinities, #*

and the standard structure at spatial infinity, 7°.



Chapter 4

The General Structure of Isolated Horizons

In this chapter, we explore the consequences of the boundary conditions stated above. We
begin by recalling some facts concerning the geometric structure of null surfaces. Then,
using the language introduced in that discussion, we will examine the basic geometry of
an isolated horizon. We will then introduce matter, specifically the Maxwell field, at the
horizon, and analyze the consequences of the boundary conditions for the matter field.
Finally, we will discuss a unique, canonical foliation which exists for every (non-extremal)
isolated horizon. This discussion will be particularly useful in the action formulation of an

isolated horizon system in the next chapter.

4.1 THE GEOMETRY OF NULL SURFACES

We begin our analysis of the structure of isolated horizons by recalling some facts about null
hypersurfaces in space-time. These surfaces possess several features which are not found in
space-like or time-like hypersurfaces. Our purpose here is to outline some of these features
and to introduce some notation which will be useful in the following sections.

Consider a null submanifold A of a Lorentzian space-time M. Space-time vectors normal
to a null hypersurface are also tangent to it and lie in the unique degenerate direction of
the induced metric ¢ := g. Since these vectors are null, the future-directed normal to A
can only be defined as a Ez’rectz'on field {¢}. As before, {{} denotes an equivalence class of
vector fields on A under the equivalence relation 3.4.

Since {¢} is everywhere orthogonal to A, any ¢ € {{} is automatically geodetic:

v,e=r0e (4.1)
for some function m(ﬁ) on A which depends on the particular null normal field chosen.

Thus, A is ruled by a null geodesic congruence. To study this congruence, we consider

the projective geometry of A. That is, we will study the geometry of the two-dimensional
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manifold ZA of orbits of {¢} in A. By its very definition, 2 A is the base space for an affine
line bundle whose total space is A. The projection I' : A — A for this bundle is given
by mapping a point of the horizon to the null geodesic on which it lies. The differential
DT of the projection maps tangent vectors on A to tangent vectors on #A and the kernel
of this map is precisely the vertical direction {¢}. Thus, a tangent vector on A can be
realized as an equivalence class of vectors on A where vectors which differ by an element
of {¢} are equivalent. The equivalence class associated to a vector V' will be denoted either
by (V) or, more often, by V. Note that, by taking its equivalence class, any vector on
A gives rise to a vector on A. This is not the case with covectors. Viewed as a linear
map on the tangent space, w € T;A will give rise to an element of Tli‘(p)@A if and only if
it vanishes on the kernel {¢} of DI'. Covectors with this property will be called projectable.
The projection of a projectable covector w will again be denoted either by #(w) or, more
often, by &. The situation with higher valence tensors is similar to that with covectors. It

bibn on A gives rise to a tensor Tal...ambl”'b”

turns out that a (space-time) tensor T,,..4,,
on ZA if and only if the contraction of £*' or £, on any index of 7" yields a sum of terms,
each of which is proportional either to £*7 or £ . Tensors with this property will again be
called projectable.

We now have a map ~ which takes certain tensors at points of A to tensors at points
of #ZA. To proceed, we must extend this map to tensor fields. A tensor field T on A will
give rise to a tensor field T on ZA if and only if (i) 7" is projectable at every point of
A and (ii) .,2/”4\T = 0. The second condition here simply requires that the tensors on ZA
gotten from projecting the tensors at different points along a given generator in A all agree.
Note this second condition is also independent of the choice of ¢ € {£}. Unfortunately,
condition (ii) is sometimes violated by certain tensors of physical interest. To remedy this
situation, we must allow “time-dependent” tensor fields on ZZA arising from general tensor
fields on A which are projectable at each point, but do not satisfy condition (ii). To make
this notion precise, pick a cross-section of A and a representative £ € {£}. We then get a
map A — ZA x R given by p— (I'(p), A), where X is the affine distance along ¢ from the
initial cross-section of A to p. Tensors which are everywhere projectable, but fail to satisfy
condition (ii) give rise to tensors on #A which depend on the “time” parameter A.

Let us now apply the above constructions to our analysis of the null congruence generated
by {¢}. The first thing we note is that the space-time metric g is projectable at each point
of A and gives rise to a “time-dependent” Riemannian metric on #A. We denote this

metric by ¢ since its pull-back to A under I' gives the degenerate intrinsic metric ¢q. To see
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that ¢ is indeed “time-dependent,” pick an £ € {¢} and form the tensor
Bg? =Viy = Lrgw = B((ﬁ)b)' (4.2)

() : Q)

It easy to show B, projects to a tensor Eab on ZA. This projected tensor is convention-
ally decomposed into pieces representing the expansion 8, shear 8[%) and twist @[%) of £
according to

BY) = 100G, + 5% - &Y, (4.3)
where 8[%) is symmetric and trace-free and @(%) is anti-symmetric. Note that, since { is
hypersurface-orthogonal (to A), the pull-back of B[(f())] to A vanishes, whence the twist of £
is zero. However, there is no reason to expect the expansion and shear of £ will vanish, so ¢
is generically “time-dependent.” Furthermore, the expansion and shear of £ may themselves

by “time-dependent.” To see this, note that Bg? satisfies

#B0) = kUBY) + BOBOYE 4+ 00 Reuy Uy + 6,V (4.4)

[

where R,;.% is the space-time Riemann tensor. Again, the right side of this equation is
projectable, but generally does not project to zero. Nevertheless, projecting both sides of

4.4 yields a useful pair of “evolution” equations' for the expansion and shear of £:

% o(Z) — H(AZ)O(Z) _ % (0((5))2 _ a.[%)a.(f)ab _}_agi)@((f)ab _ Rcdécfdy (45)
#£50) = {81 —0050) + 2(Ceatt?), (4.6)

where R.4 is the Ricci tensor and C'.,5; the Weyl tensor on space-time. The first of these
results, 4.5, is the well-known Raychaudhuri equation, generalized to null congruences. We
could also have derived a third equation describing the “evolution” of the twist, but this
equation is satisfied identically in our case since the twist vanishes. Finally, note that when
£ is rescaled by a function f as in 3.4, the expansion and shear are simply rescaled by the
same function.

Let us now examine the issue of covariant differentiation on the null surface A. Recall
that, in the case of a space-like or time-like surface, there is a unique covariant deriva-
tive which is compatible with the (non-degenerate) metric induced on the surface by the
space-time metric. In the null case, the induced metric is degenerate and there are many

compatible connections on A. However, recall again from the non-null case that there is a

Tn deriving these expressions, we have used the result BZ(B((LQB(Z)Z,C) = Eéﬁ)ﬁ(z)bc. The contraction of
indices does not generally commute with the projection to ZA, but one can show in this case that it does.
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second way to construct the intrinsic covariant derivative on the surface from its space-time
analog: Take the space-time covariant derivative of one vector field which is tangent to the
surface along another and project the result into the surface. The purpose of taking the
projection in this procedure is to guarantee that the intrinsic covariant derivative yields
a vector field which is again tangent to the submanifold. In the case of a null surface A,
there is no natural projection of space-time vectors into A. However, it may happen that
the space-time covariant derivative of one vector field tangent to A along another is always

tangent to A anyway. This will occur precisely when
Vo by =y (4.7)

Note that, for a non-null surface, the analogous condition would be that the extrinsic
curvature of the surface vanishes. In our null case, however, 4.7 is exactly equivalent to
restricting £ to be both expansion- and shear-free. On such a surface, the intrinsic covariant

derivatives of a vector field v* and a covector field wy are given by
0=V, VP and Dawp = Vo, (4.8)

respectively. Here, V? denotes any vector field in a space-time neighborhood of A whose
restriction to A agrees with v°, and Q; denotes any covector field in a space-time neigh-
borhood of A such that Q; = wp. One can easily check that condition 4.7 guarantees the
definitions 4.8 are indepen((i_ent of the particular space-time extensions chosen for the fields

acted upon by the connection. Moreover, 4.7 implies
Db = 1P, (4.9)

One can see from this formula that, although the connection & does not depend on the
choice of £ € {£}, the one-form @) does. In fact, one finds w® transforms under a rescaling

as in 3.4 as

@ = = 4 d(In f). (4.10)

However, in the case of an isolated horizon, when we restrict £ to [¢] C {¢}, the connection

form @ will be independent of the choice of £ and we can simply write .

4.2 ISOLATED HORIZON GEOMETRY

We will now apply the results of the previous section to the particular case of an isolated
horizon (A, [f]). In this discussion, we will restrict the equivalence class {¢} used in the

previous section to the class [¢] to which the boundary conditions refer.
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Boundary condition II requires the expansion of [(] to vanish — a condition which is
independent of the choice of £ € [¢]. Under this restriction, the Raychaudhuri equation 4.5
simplifies to

0=25W50% 1 R0, (4.11)
Since ZA is a Riemannian manifold, the square of the shear is non-negative. Furthermore,
the energy condition Va, together with the equations of motion at A, guarantees the second
term is also non-negative. Thus, both terms must vanish separately. It follows that the

congruence generated by [{] is shear-free and
Rpl 0P = STGT 0" =0 = T{) = —el (4.12)

for some non-negative function e on A. Physically, this result simply states there is no flux
of matter energy-momentum through the surface A. Furthermore, using 4.2, the vanishing
expansion and shear of [(] imply the intrinsic metric ¢ on A is Lie-dragged along [¢]. These
two results are important reflections of the horizon’s isolation.

Now let us examine the space-time curvature at the horizon. The main implication of
the boundary conditions for the Ricci curvature arises by applying the Einstein equations
at A to 4.12. This yields

R(l) = [Ao — 47 G(T + 2¢) ¢, (4.13)
where Ag denotes the cosmological constant, T is the trace of the matter stress-energy tensor,
and e is the function introduced in 4.12. In particular, note that this relation implies the
pull-back of its left hand side to A vanishes. With this result in hand, we can now examine
the Weyl curvature at the horizon. Since A is shear-free, it follows immediately from 4.6

that £ is a principal null direction? of the space-time metric at the horizon:
Clgpal®t? = 0. (4.14)
—

This result is not terribly surprising; the Weyl tensor always possesses four principal null
directions and, as we have just shown, the null normal to any shear-free null hypersurface
will be one of them. However, the boundary conditions actually allow the proof of the
stronger statement that £ is a repeated principal null direction® of ¢ at A. To accomplish

this proof, we use 4.7 to calculate

R?_bcdfd =29, Dyt° = (d@)apLe. (4.15)

?In the Newman-Penrose language, this means the curvature component Wy vanishes whenever £% is
chosen as the first null tetrad element. The Newman—Penrose formalism is discussed in Appendix B.

3In the Newman—Penrose language, this means the curvature components ¥y and ¥, both vanish whenever
£¢ is chosen as the first null tetrad element.
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If we pull this expression back on its third index as well, the right side vanishes. Then, using
the trace-free character of the Weyl tensor and 4.13, it follows that £ is indeed a repeated

principal null direction of the space-time metric at the horizon:
Croapalt? = 0. (4.16)
—

Note that we no longer pull-back on the third index here. Thus, every space-time admit-
ting an isolated horizon is of Petrov type Il at the horizon itself. This is an important
characteristic which carries over from the stationary context, where the usual black hole
solutions are of type II-II everywhere, even off the horizon. In contrast, however, note that
the space-time geometry away from an isolated horizon horizon need not be algebraically
special at all. Furthermore, since the definition of an isolated horizon is made locally, we
have no results on the null directions transverse to A, whence the space-time geometry at
an isolated horizon may not be of type II-11.

All of the results of this section so far have not made use of condition III. Let us now
examine the additional consequences which result when it is taken into account. We have
already seen the geodesic congruence generating an isolated horizon is both expansion- and
shear-free, whence the connection & described in the previous section is defined on A. In

terms of the intrinsic connection, condition III simply reads
[ %, Z,)VP =0 forall VP on A, (4.17)

This result makes the content of condition III even more transparent than before: it insists
the intrinsic connection, as well as the intrinsic metric, on A is “Lie dragged” along /.
If the geometry of A were non-degenerate, these two properties of its geometry would
not be independent. However, since & is not uniquely determined by ¢ in the null case,
the additional restriction is necessary here. Now, setting V = £ in 4.17 and using 4.9
immediately implies

Zyw = 0. (4.18)

()

In view of the definition 4.7 of @, the contraction £_1w is simply the acceleration x,’ of £ on

A. In analogy with the usual definition 2.13 for a Killing horizon, we take this acceleration

to define the surface gravity of an isolated horizon. Since we have no prescription for

choosing ¢ € [{], the surface gravity is defined only up to an overall, multiplicative constant,
()

whence the notation x,’. Note, however, that contracting £ into 4.18 immediately implies

the surface gravity is constant along each generator of A no matter which £ is used. Just
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as in the Killing horizon case, we must do more work to show the surface gravity is also
constant from one generator to another.

Using the curvature constraints 4.16 and 4.13 in 4.15, we derive the new result
{1dw =0, (4.19)

This result implies the two-form dw is projectable to ZA. Moreover, since all two-forms on
P A are proportional, the projection can be written as the product of some scalar function
with the volume form € on #A. The two-form dw on A is therefore proportional to the
pull-back of € under the projection map I', denoted %. Following the Newman—Penrose

notation?, we write
dew = 2Im [W,] %. (4.20)

The result 4.18 then implies Im [W;] is constant along each generator of A. Furthermore, the
zeroth law is now easy to prove since using 4.19 in the Cartan formula for the Lie derivative
in 4.18 implies

dlowm)=dl =0 (4.21)
on A. This is the zeroth law of black hole mechanics for isolated horizons. Although we
have not singled out the value of the surface gravity (since £ € [f] is undetermined), we have
shown all choices of £ € [{] lead to a uniform surface gravity on A. The situation is similar
with Killing horizons: no matter which horizon-generating Killing field is used to fix the

scaling of the null normal to the horizon, the surface gravity is uniform.

4.3 THE FORM OF THE MAXWELL FIELD

In the previous section, we have analyzed the restrictions placed on the gravitational degrees
of freedom (i.e., the space-time geometry) by the isolated horizon boundary conditions.
In this section, we extend that analysis to the Maxwell field, which is the only type of
matter allowed at the horizon in this thesis. For generic matter fields, the most important
consequence of the boundary conditions is 4.12. However, it appears the full import of this
result must be analyzed on a case-by case basis, as is done below for the Maxwell field.

Let us begin by recalling the Maxwell stress-energy tensor can be expressed in two forms:

_ 1 c 1 cd| __ 1 c 1 cd
rlrab — E Fach - ZgabIchIF } — E {(*F)ac(*F) - Zgab(*F)cd(*F) } ; (422)

4The Newman—Penrose components usually depend on the particular null tetrad used in their calcula-
tion. However, since the curvature components ¥y and ¥; vanish in our case, the value of ¥y is actually
independent of the choice of n*, m® and m®. Thus, the notation used here is consistent. See Appendix B
for details.
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where I' denotes the Maxwell field strength and *I' denotes its space-time dual. Using the
first form and contracting £ on both indices of the stress energy tensor, 4.12 implies the
vector £ 1 IF is null. Moreover, since I is antisymmetric, that vector is also normal to £. It

follows that £ 1 IF is proportional to £, and we have
C1F =0=/01x«IF, (4.23)

where we have used the second form of the stress energy tensor to derive the second result.
These results show the Maxwell field strength and its space-time dual are both projectable
to ZA at each point of A. We define the electric and magnetic flux densities out of the
horizon® by Ea := —+IF and Ba = —IAF, respectively. The Maxwell equations imply the

exterior derivatives of I' and *IF' both vanish at the horizon, so
ZF =0 = ZpxIF. (4.24)

Thus, the flux density 2-forms [Eo and Ba are both “time-independent,” but are otherwise
unrestricted. In particular, they need not be spherically symmetric as in [7]. Finally, the
electric and magnetic charges inside (see footnote) the horizon are defined by

—47QA = j{ *IF and —4rPA = T, (4.25)
SA SA

where Sa is any spherical section of A. Since the flux densities are “time-independent”, it
follows immediately that both charges are independent of the choice of section Sa.

Now let us examine the consequences of condition Vyp.x for the Maxwell potential. As
we stated previously, this condition is designed to render the total Einstein—-Maxwell action
differentiable. However, as we will see now, it plays an additional key role in our formulation

of the first law of black hole mechanics. Define the electric potential ®, of the horizon by
b =LA (4.26)

on A. In the formulation of black hole mechanics in terms of stationary space-times, this
quantity appears in the first law as the coefficient of the electric charge variation. The
first law makes sense in this context only because the (global) stationarity of the Maxwell

potential guarantees the electric potential is constant over the horizon. In the case of

5Consider a space-like hypersurface M which intersects A in a two-sphere Sa. The orientation of Sa
is defined with respect to the spatial normal pointing outward from M, or into the horizon. We want to
characterize the electro-magnetic fields arising from charges inside the horizon. The signs in our definitions
are chosen to accommodate the orientation of Sa.
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isolated horizons, condition Vppax only requires £ to be a symmetry of A at the horizon.
—

However, using 4.23, this is still sufficient to find
LA =—-dd, =0. (4.27)

Thus, the electric potential is constant over any isolated horizon. In the stationary context,
we can use the global Killing field to find a value for the electric potential at the horizon using
fall-off conditions at infinity. For general isolated horizons, there is no such prescription:
the electric potential is constant, but we do not know its value. This is directly analogous

to the situation with the surface gravity discussed in the previous section.

4.4 HORIZON FOLIATION

The previous sections have examined the restrictions placed by the boundary conditions
on the physical fields at an isolated horizon. The purpose of this section is to explore the
general structures which exist on the horizon as a result of these restrictions. Specifically,
we will be concerned with the existence of a preferred foliation of a generic (non-extremal)
isolated horizon by 2-spheres. The existence of this foliation has important implications
for the structure of the symmetry group of the horizon and will impact the phase space
construction of the next chapter.

Let us begin by describing the foliation of A in the non-rotating case, since its definition
there is simpler. First, a non-rotating isolated horizon (A, [(]) is defined by the boundary

conditions set out in chapter 3, together with the additional restriction
Im [Wy] = 0. (4.28)

According to 4.20, this is precisely the case where w is curl-free. However,  has non-
vanishing contraction with £ when the isolated horizon is non-extremal (i.e., when its surface
gravity is not zero) and therefore does not vanish identically. Thus, @ is hypersurface-
orthogonal everywhere on A. The surfaces to which it is orthogonal are the leaves Sa of
the preferred foliation. Each Sa must be transverse to £ since £ | w = H(AZ) # 0, and
therefore must have the topology of a 2-sphere.

While Im [W4] does not vanish for a general (rotating) isolated horizon, this function is
still constant along each generator of A. Thus, the curl of @ in 4.20 projects to a “time-

independent” 2-form dw on ZA. We will seek a 1-form potential® & on A for the

5We commit a minor abuse of notation here. Note that the 1-form & being introduced here is not the
same as the projection @ of the horizon connection. In fact, the later does not even exist when the surface
gravity is non-zero.
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projected curvature dw. Of course, this potential is not unique; one is free to add to it
the gradient of any function on ZA. However, there is a fairly natural gauge condition we
will use to fix this ambiguity: we insist o is divergence-free on ZA. Since there are no

harmonic 1-forms on the 2-sphere # A, there exists a unique 1-form @ such that
dtg = 2Im [Wy]e  and dxwo =0, (4.29)

where * denotes the Hodge dual on #2A. Since the right sides of both equations in 4.29 are
“time-independent,” the potential o will be so as well. Consequently, we can pull it back
under the projection map to find a 1-form @ on A satisfying %@ = 0 = £ _ @. Moreover,

the curvature of @ is the same as that of @ and we can write
w=w+dy (4.30)

for some (globally-defined) function 7> on A. Now, in the non-rotating case, the divergence
and curl of & vanish on ZA, whence @ = 0 on A in that case. Thus, the function % is
constant on each leaf of the preferred foliation defined above for a non-rotating horizon. We
will carry this definition over to the general, rotating case: the leaves Sa of the preferred
foliation of A are the level surfaces of the function .

The attitude adopted in this thesis is that the isolated horizon boundary conditions
represent restrictions on the usual physical fields; there are no new degrees of freedom at
the horizon. In this spirit, the definition of the function ¥ of 4.30 requires a little more
care. The problem is the definition, as it stands, allows for the addition of an arbitrary
constant to i without changing any of the present results. To fix this ambiguity, note that
the geodesic generators of an isolated horizon are typically past-incomplete and terminate
on some 2-sphere cross-section S, of the horizon. From this point on, we require not only
that such a surface exists, but also that it is one of the leaves of the preferred foliation of A.
In the next chapters on the action and phase space constructions, we will always work with
a finite (in affine length along ¢) segment of an isolated horizon A with past boundary at
such a surface. In order for ¥ to be determined uniquely by w, we apply the “gauge-fixing”
condition

=0 on Sy. (4.31)

Once this condition is imposed, the function % is completely determined by the physical
fields already present in the problem.
Finally, let us briefly examine the situation with the Maxwell potential A. When con-

structing the phase space of Einstein—-Maxwell isolated horizons, it will be most useful to
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have a decomposition for A which is analogous 4.30. Thus, we define a function x on A by
the conditions
xX=0 onS,,and Zx= —CD(AZ). (4.32)

This definition is simpler than the one for % since we already know the leaves of the preferred
foliation. Its first component gives an initial value for y and the second describes how to
“evolve” x along the generators of A. Note the “evolution” equation is independent of the
choice of £ € [(] and the sign is chosen such that the intrinsic Maxwell potential é admits

a decomposition analogous to 4.30:
A= A +dy, (4.33)

] o
with £ 1 A = 0. While A is therefore projectable to #A, unlike @, its divergence there
needn’t vanish there and is, in fact, completely arbitrary. Thus, we have not imposed any

additional gauge fixing on A apart from that required by condition Vygax.






Chapter 5

Action and Phase Space

In this chapter, we will introduce the action principle appropriate to the isolated horizon
boundary conditions. We will also derive from this action the covariant phase space of
histories describing isolated horizons in a given region of space-time. Finally, we will initiate
the discussion of Hamiltonians describing motions along certain vector fields in these space-
times and the definition of horizon mass. We will see, however, that the natural definition of
horizon mass requires somewhat more care and we will postpone a more complete description

for the following chapter.

5.1 ACTION PRINCIPLE

This section considers the first-order Palatini formulation of the Einstein—Hilbert action for
general relativity. For technical simplicity, we reserve discussion of the Maxwell field for
appendix A. The local variables describing the gravitational field in this context consist of a
tetrad ef — or, a section of the frame bundle over space-time — and a connection D in that
frame bundle. Since the introduction of spinorial matter would require a tetrad, it is natural
to introduce tetrads even at this early stage. The use of a first-order formalism, on the other
hand, is necessary for primarily technical reasons. Specifically, the Gauss law constraint,
characteristic of first-order formulations of general relativity, makes the connection between
the Hamiltonian formalism and the first law of black hole mechanics particularly clear.
We begin by fixing the kinematical structure on the space of histories considered in the
action principle. The specific case of interest is that of an asymptotically flat space-time
M with an interior boundary A which will be an isolated horizon surface. In the case of
an asymptotically flat space-time with no internal boundary, the kinematical structure of
the space of histories is completely fixed by requiring certain asymptotic fall-off conditions

on the physical fields at infinity. We will require these standard fall-off conditions in our

41
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case as well. Since boundary integrals at infinity play only a secondary role in our analysis,
the precise form of the fall-off conditions will not be stated. However, we must also fix the
kinematical structure at the horizon, and there we must be more explicit. We have seen
in the previous chapter that every (non-extremal) isolated horizon admits a “rest frame.”
Since the laws of black hole mechanics concern the black hole mass, it is natural always to
work in this rest frame for our Hamiltonian constructions. Thus, once and for all, we fix an
equivalence class [¢] of vector fields on A and a foliation of A by 2-spheres Sa. In the space
of histories for the action principle, (A, [f]) is always an isolated horizon and the Sa are the
leaves of its “rest-frame” foliation. These conditions partially restrict the diffeomorphism
gauge freedom at the horizon to give us more control over the space of histories. This is
analogous to the situation usually encountered at null infinity; one isolates the “universal
structure” of the boundary and then fixes such a structure kinematically in order to make
the action and Hamiltonian constructions simpler. In our case, it will also be convenient to
fix a null tetrad (¢/,n!, m!, m’) in the internal space at the horizon!'. The frame field ej is
then constrained to satisfy ¢’e; € [f] at the horizon. In addition, we will insist the vector
nler be orthogonal to the leaves Sa of the preferred foliation of A.

As usual, the allowed histories in the action principle consist of smooth field configura-
tions (e, D) satisfying the kinematical conditions stated above. Let us first recall the action
appropriate to the case where the only boundary of space-time is at infinity. It is given by

S[e, D] = 16_7T1G/M Tr[zAFHﬁ/m Tr[AAY], (5.1)

where the trace is taken in the internal space and F is the curvature of the connection D.

The 1-form A appearing in the last term here is the connection 1-form of D relative to a
fixed, flat connection d in the asymptotic region. The two-form ¥ is gotten by dualizing

the exterior product of a pair of co-tetrad elements on the internal indices:
E]J = %6[‘]](L€K AN el (5.2)

Note the surface term at infinity in 5.1. This term is needed for this action to be “differ-
entiable,” i.e., for the surface terms in its variation to vanish in the action principle. The
exact form of the surface term which must be added to the bulk action is determined by the
fall-off conditions imposed on the fields. We have adopted the standard fall-off conditions

and thus find this standard surface term.

'Note that the tetrad elements m’ and m’ cannot be defined globally when the horizon topology is
5% x R. Although this is an important point when considering the formulation of isolated horizons in terms
of self-dual variables, it will not affect our calculations here.
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With the surface term, the extrema of the action 5.1 are solutions to the usual field
equations of the Palatini theory. Specifically, extremizing with respect to the connection,
one obtains

DY = 0. (5.3)

This equation implies the connection D is equal to the (unique) connection compatible
with the frame field: De = 0. When this equation holds, the curvature F is related to the

Riemann curvature associated with e by
FabIJ = Rabcde%eiy (54)

where e! is the co-tetrad inverse to e%: e%e] = &7. Varying the action with respect to the

frame field and using this curvature relation yields (see 5.7 below) a term
Tr[6% A F] = —28e! A xG(eg), (5.5)

where G(er) denotes the Einstein tensor associated with the frame field, contracted on one
index with the frame vector ey, and * denotes the Hodge dual operation on space-time. In
the absence of matter fields, this term must vanish. Thus, we reproduce the usual vacuum

FEinstein equation

Gap = 0, (5.6)

More generally, the additional contributions to the action from matter fields will depend on
e and the right side of this equation will be proportional to the matter stress-energy.

Let us now return to the case of primary interest to us here. The space-time region M
contemplated in the action principle has a boundary consisting of four distinct components:
its future and past boundaries Mt and M, its outer boundary at spatial infinity which
we denote simply by oo, and an inner boundary at an isolated horizon A. These boundary

components are not disjoint and the intersections of M* with A and oo will be denoted Si

and S=

=, respectively. These definitions are illustrated in figure 5.1. As we have discussed

above, the action integral 5.1 requires a surface term at infinity in order for the surface terms
at infinity in its variation to vanish and, therefore, for the extrema of 5.1 to correspond to
solutions of the equations of motion. Since the space-times we consider have a new, interior,
boundary component, one might expect the action 5.1 will acquire a second surface term
at the horizon. Surprisingly, however, this turns out not to be the case. The variational
principle for the action 5.1 is already perfectly well defined for the class of space-times under

consideration. To see this, vary 5.1 to find
-1
8(Sle, D)) = /T SXANF+86ANDY] —
(Sle, D) = 1oz [ TBEAF 4 ]

1
167TG AUM=E

Tr[6A A Y] (5.7)
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Mt
SA
A M
Sa

M-

Figure 5.1: The region M of space-time considered in the variational principle
is bounded by two partial Cauchy surfaces M+ and M ~. They intersect the
inner boundary A in two leaves SX and S} of its preferred foliation and extend
to spatial infinity. The boundary A itself is an isolated horizon.
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where M* represents the union of M+ and M~ and the 1-form §A encodes the change in
the connection D. The fields at M* are fixed in the variational principle, so we may safely
drop those surface terms in this calculation. In order for the equations of motion (which
are equivalent to the vanishing of the bulk term in 5.7 for generic variations) to give true
extrema of the action functional, the remaining surface term at A must also vanish. We
will now show it does.

Using the definition 4.7 of @ and the equations of motion at A, we have
Dl =w ;. (5.8)

Furthermore, the frame field e and the internal tetrad (¢7,n!, m! m’) trivially provide a

tetrad in the tangent bundle to space-time. In terms of these tetrads, one can show
S = 9% (Tl 4 2in A (m M) — ). (5.9)

The integrand of the horizon surface term in 5.7 is Tr [§A A X]. Using 5.8 and 5.9 in that

surface term, we evaluate it to be

Tr[AAY] = —20w A “. (5.10)

Since the fields are fixed at M¥* in the variational principle, this 3-form vanishes at Si.
However, since % is defined by pulling back the “time-independent” volume form ¢ on ZA,

it must be Lie dragged along ¢*. Thus, using (the variation of) 4.18, we find
Z (T PANY]) = —2(Ldw) A e = 2(Lym) A %, (5.11)

where we have used condition III in the second equality. Finally, since we have fixed the
class [£] of vector fields once and for all, §¢ must be proportional to £ by a constant. Thus,
using 4.18 again, the right side of 5.10 is Lie dragged along £. Since it vanishes at Si, it
must vanish everywhere.

We have now seen that all the surface terms in 5.7 vanish when (i) the fields are fixed
at M* as in the variational principle and (ii) the isolated horizon boundary conditions
hold at A. No additional surface term at A is required. The extrema of 5.1 are therefore
solutions to the bulk equations of motion. An action with this property is often called
“differentiable.” In essence, however, this just means the variational problem for the action
in question, subject to a set of known boundary conditions, is globally well-posed. There
does not seem to be any strict sense in which the question of “differentiability” can be

phrased.
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5.2 COVARIANT PHASE SPACE

We turn now to the problem of constructing a phase space of systems containing isolated
horizons. In particular, we will consider the covariant phase space framework for the space-
time region M of the previous section. In this framework, the space on which we work
consists of the solutions to the field equations in M. The action functional gives rise to a
(pre-)symplectic structure on the covariant phase space in a natural way. Note, however,
that the covariant phase space is not generally a phase space in the usual sense since the
(pre-)symplectic structure will have degenerate directions.

Let us recall the basic ingredients of the covariant phase space framework. As we
mentioned previously, the space itself, denoted =, consists of the extrema of the action
functional under a variational principle wherein the fields are held fixed at M*. Physically
distinct solutions to the equations of motion, however, must have different data on M%*.
Thus, although the action is extremized on each solution within a certain class of histories
sharing its data on M¥, the variational principle does not apply to variations which move
from one solution to another. The action functional 5.1 therefore defines a non-trivial
function on the covariant phase space which we also denote by S. Given a solution £ € =
to the equations of motion, a solution &£ to the linearized equations of motion on & defines
a tangent vector to the covariant phase space. The variational formula 5.7 gives the Lie
derivative of the action function along 6¢. Unlike in the previous section, however, we can
always drop the bulk term in 5.7 in the covariant phase space since we always work on a
solution to the equations of motion. Thus, the Lie derivative in question is always given by
surface terms.

The Lie bracket of two vector fields is defined by the relation
[ L1y L5,6]S — Lsie,6,)5 = 0, (5.12)

for any function S. Let us consider this relation when S is the action function on =. In
the variational language, the left hand side of this formula represents the anti-symmetrized
second variation of the action. Since these variations are made on a solution to the equations
of motion and the variations themselves solve the linearized equations of motion, the bulk
term in this second variation will again vanish. Moreover, as we will see below in the
isolated horizon case, the surface integrand on A in the second variation is an exact exterior
derivative and thus may be rewritten as a pair of terms on Si. Therefore, the entire second

variation consists of a pair of integrals over M+ and M ~, each with additional surface terms
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at Si:
51(5:5) = 82(615) ~ 01,805 = [ on(§6€,59+ §,0aE6,800.  (5.13)

Moreover, by the general argument above, the left hand side of this equation vanishes and
the integrals at Mt and M~ give equal and opposite values. Therefore, if we reverse the
orientation of one of the M*, the integral on the right hand side will give the same value
whether it is taken over M+ or M~. In fact, since we can repeat this argument with M

replaced by any subset of M, the integral
QG HE5) i= [ oulEHERE) + § wal&iE, 00 (5.14)
A

will give the same value when integrated over any partial Cauchy surface in M. In short,
this means the integral in question is actually associated with the solution £ and the lin-
earizations § & and 8§ therefrom, and not with any particular slice of M. Since  is
anti-symmetric in 6:€ and 85¢, it defines a 2-form on =. This is the (pre-)symplectic struc-
ture we seek.

The key step in the above construction of the symplectic structure lies in proving the
surface term at A in the second variation of the action may be rewritten as an exact
exterior derivative. It is not clear that this can always be done. However, although there
are no concrete statements to the effect, one expects this feature might be related to the
differentiability of the action discussed in the previous section. For now, we will simply
focus on the action 5.1 and show it does possess this feature.

We begin with the variational formula 5.7. Taking its second variation as in the above

discussion, and restricting ourselves to the covariant phase space, we find
1
167G AUMZE

51(525) —52(515) - [51,52]52 Tr [5114/\522— (5214/\512] (515)

Our task is to show the integrand on A can be written as an exact exterior derivative of

some 2-form. First, by an argument virtually identical to that leading to 5.10, we show
Tr [5114/\522] = —251@ /\52 26 (516)

on A. If we decompose §;w according to 4.30, only the term involving dé; will survive since

no non-vanishing 3-form on A can be orthogonal to [(]. Moreover, the exterior derivative of

% is zero, so the right side of 5.16 is indeed an exact 3-form. Thus, we find the pre-symplectic

structure of 5.13 is given in this case by

1 1
61,52) = 7 /M THANLE = ARG+ = f Sk - avh (5.07)
A
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Note that the surface terms here have the opposite sign from what one might expect doing
the integration by parts in 5.15. This happens because Sa in 5.17 is considered as the
inner boundary of M, whereas in the integration by parts, Si arise as the future and past
boundaries of A. These two ways of approaching SA—L induce opposite orientations on the

2-spheres, whence the sign change.

5.3 HORIZON DIFFEOMORPHISM GENERATORS

In the previous section, we have seen there exists a well-defined covariant phase space = of
asymptotically flat space-times M containing a single isolated horizon A. In this section,
we consider the motions induced on = by dragging the physical fields along various vector
fields on M. In particular, we are interested in whether a given infinitesimal diffeomorphism
represents a canonical transformation (symplectomorpism) on phase space. Among those
diffeomorphisms which are canonical transformations, we are also interested is discovering
which represent physical symmetries of the theory and which are pure gauge. The analysis
of this question is begun here, but will be finished in the next chapter.

To begin, not every diffeomorphism of M gives rise to an allowable transformation on the
phase space Z. Only those which preserve the kinematical structure of the phase space fields
should be considered. The restrictions placed on the transformations at infinity are well
known, we will focus now on the restrictions arising from the kinematical structure at the
horizon. Each infinitesimal diffeomorphism should preserve A itself, the equivalence class
[€], and the foliation of the horizon by Sa. The vector field generating such an infinitesimal

diffeomorphism in space-time is therefore restricted to be of the form
W= f(W)f + w, (5.18)

where fy) is constant over each San, £ fw) is constant over A, and w is everywhere
tangent to an Sa and satisfies [¢, w] = 0. Any vector field with this structure at the horizon
is allowed kinematically as a diffeomorphism of an isolated horizon space-time. We now want
to analyze the question of whether these diffeomorphisms can be implemented canonically
on phase space and, among those which can, which ones are physical symmetries and which
are pure gauge.

Consider a vector field W on M satisfying 5.18. We will also allow this vector field to
depend implicitly on the state of the physical fields, since we will see we must allow for this

eventuality in what follows. The motion in phase space associated to the diffeomorphism
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along W is given simply by the Lie derivative:

Y = Ly =W A DS+ DWW X)) +[X, W A] (5.19)
WA= LwA=W I F+DW A, (5.20)

where A is the connection 1-form of D relative to an arbitrarily chosen flat background
connection . One can easily verify that §" satisfies the linearized equations of motion and,
hence, that it represents a tangent vector field on phase space. This vector field generates
a canonical transformation if it preserves the symplectic structure, i.e., if ZwQ = 0.
5W

Equivalently, is a canonical transformation if and only if there exists a Hamiltonian

function H" on phase space such that
SHY = Q(8,8™) (5.21)

for all tangent vectors § to phase space. As with any generally covariant theory, one expects
the Hamiltonian, if it exists, will consist only of surface terms. A rather lengthy calculation

in the present case reveals

Q(6,8) = —— & 8[(w 1 =) %] — (w1 =) %+ (L — V)6 %
8rG Js,
1

167G Js.,

(5.22)

Tr[AA (W 1 5) + (W 1 A)SY]

The right side of this result consists of integrals both at the horizon and at infinity. Since
our main concern here is with the horizon integrals, we will concentrate on the case where
W = 0 outside some compact neighborhood of the horizon.

The first two terms of the horizon integral in 5.22 depend only on the horizontal com-
ponents of W, and the third depends only on the vertical. Let us first focus on the third
term which contains the difference Hy v — 6W1p. Since 6V represents the dragging of the
physical fields along W, one might expect this difference should vanish. However, when W
has a vertical component at S, dragging along W will violate the “gauge-fixing” condition
4.31. On the other hand, the definition 4.30 of 3 implies 6" % may differ from Zy v at
most by a constant. Therefore, in order to preserve the condition 4.31, we use this constant
freedom to set ~

Wap = Lyip — Fv(j(w)é), (5.23)
where f(;/V) is the value of fi) on Sy. Since the zeroth law holds, the second, “correction”

term here is indeed constant over the horizon. Furthermore, under this definition §" )
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vanishes at S, whence condition 4.31 is preserved. Now, Hamilton’s equations 5.21 tell us
that ¢f a Hamiltonian exists which generates motions along W, it will have a surface term

at the horizon whose variation is given by

SHY = # 2 §[(wl @)% — (bw @)%+ /-;(AW)(S%, (5.24)

where I{(AW) is a shorthand for H(Af(_w)é). In other words, it denotes the surface gravity
associated with the vertical part of W at S,. We can see already in this result the possible
obstructions to the existence of a Hamiltonian generating motions along W. The first term
in the integrand of 5.24 is an exact variation and therefore poses no problem. The other two
terms, however, generally cannot be written as exact variations and therefore can prevent
the construction of a Hamiltonian. There are a couple important exceptions, however. First,
any fized (i.e., state-independent) W which is horizontal everywhere on A will leave only
the first term in the integrand of 5.24. There will exist a Hamiltonian in this case and it will
be given simply by the integral being varied in that first term. Second, a purely vertical W
which vanishes at S, will also leave no non-exact terms. However, in this case, the entire
right side of 5.24 vanishes, whence 6" is a degenerate direction of the symplectic structure.
In other words, these diffeomorphisms are pure gauge.

Let us conclude this discussion with a pair of remarks.

1. Any vector field W given by 5.18 can be written uniquely as a sum of two other
vector fields of the same form: one with fy) constant over A and the other purely vertical,
with fw) vanishing at Sy. Since the second vector field always generates pure gauge
motions in phase space, it is natural to remove it from our consideration of the potential
true symmetries of the theory. Therefore, we need only consider diffeomorphisms along

vector fields of the form

W=cl+w (5.25)

with ¢ constant and w constrained as before. This fact will simplify the discussion in the
next chapter considerably.

2. Among the fized vector fields of the form 5.25, we also see that the only ones
which generate canonical motions are those which are horizontal everywhere. To allow for
diffeomorphisms with a vertical component, we must allow state-dependent vector fields
W. This is a particularly important point since one expects time-translation symmetries,
for example, should have vertical components. This point will be important to our proof of

the first law of black hole mechanics.
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Angular Momentum, Mass and the First Law

In this chapter, we construct definitions for the mass and angular momentum of a general
isolated horizon and show they are consistent with the first law of black hole mechanics.
The definitions are suggested by the form of the Hamiltonians generating motions along
certain vector fields. We introduce a class of axially symmetric isolated horizons for which
we expect the angular momentum will be well-defined. Next, for this same class of isolated
horizons, we consider the definition of horizon mass and show it requires a generalized form
of the first law of black hole mechanics. Finally, we examine the first law as it appears in
the isolated horizon context and make several remarks on how it can be used in variety of

situations.

6.1 RIGID ROTATION AND ANGULAR MOMENTUM

To begin the discussion of angular momentum, we introduce the notion of a rigidly rotating
isolated horizon. The intuitive idea is to define a class of isolated horizons which are
analogous to the event horizons in stationary, axi-symmetric black hole space-times. Since
we wish to compare these horizons to one another in a physically meaningful way, it is
natural to strengthen the kinematical structure at the horizon to encode the axial symmetry.
Therefore, we fix a vector field ¢ on A which (i) is everywhere tangent to an Sa, (ii) has
vanishing Lie bracket with [], (iii) vanishes on exactly two generators of A, and (iv) has
closed, circular orbits with affine length 27. The first two conditions make ¢ an allowable
diffeomorphism of A in the sense of the previous chapter and the last two give ¢a the
characteristics of a rotational symmetry. We will now consider the phase space of isolated
horizons for which this ¢a is a Killing field for the degenerate intrinsic metric on A. This
phase space is a subset of the space we have discussed up to this point. The new restriction

on the space-times we consider can be interpreted as an additional boundary condition on

51
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e. This restriction is actually somewhat weaker than it appears. It turns out [10] that if an
isolated horizon admits any symmetry along a vector field which is not parallel to [£], then
it must also admit an axial Killing field like ¢a. This result is very similar to Hawking’s
[19] and Carter’s [4] proofs that a stationary, but non-static, black hole space-time must
be axi-symmetric. Our new kinematical condition merely asserts that the axial symmetries
“line up” when comparing rigidly rotating horizons.

Now, consider space-time vector field ¢ which approaches ¢o at A on each rigidly
rotating isolated horizon. Such a vector field will be state-independent at A and will define
a purely horizontal infinitesimal diffeomorphism of the horizon. The arguments of the
previous chapter therefore imply 8% is a Hamiltonian vector field and the horizon surface

term in the corresponding Hamiltonian is given by

1
—Jp = H? = — %. 1
Ia=HE = g f (92 0w)% (6.1)

We define the angular momentum of a rigidly rotating isolated horizon to be this Ja. The
definition is manifestly (quasi-)local to the horizon and the minus sign arises because Sa
is an inner boundary of space-time. Let us now explore some of the properties of this
definition.

The first question one asks is whether the event horizon of a Kerr black hole is a rigidly
rotating isolated horizon and, if so, whether the above definition of angular momentum
reproduces the standard result. The answer, in both cases, is in the affirmative. As discussed
previously, the event horizons in the Kerr(-Newman) solutions are isolated horizons and
the axi-symmetry of the ambient space-time defines the intrinsic Killing field ¢a. Thus,
these are rigidly rotating isolated horizons. Now, suppose the intrinsic vector field ¢a on
a rigidly rotating isolated horizon can be extended to a Killing field ¢ in a neighborhood
of A. Consider the covector n on A defined by the frame field e and the fixed internal
tetrad. Since n is the covariant normal to the foliation by Sa and is normalized such that
£ 1 n = —1 everywhere, it follows that Z;n = 0 and therefore that dn = 0 on the horizon.
Using this fact it is easy to show Z; n = @w. We use this relation in the angular momentum
definition 6.1 to compute

167G Ja= -2 ¢ (daJ Fyn) = 2% (Zyda 1 n) % = j{ (€2 de)-n%,  (6.2)

Sa Sa Sa
where we have used the Killing property of ¢ in the last equality. The integrand in the final
result here can easily be rewritten as the space-time dual of d¢. The angular momentum of

a rigidly rotating isolated horizon when a Killing extension of ¢ exists is therefore given
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by the Komar expression 2.17. In particular this means the angular momentum defined
here will produce the standard value for a Kerr black hole.

A second question regarding the angular momentum of a rigidly rotating isolated horizon
is whether it can be written in terms of the space-time curvature at A. Conventional wisdom
has it that angular momentum is “encoded” in the Newman—Penrose component Im [W;] of
the Weyl curvature. This rule of thumb is explicitly realized in the present construction.
Since ¢a is a Killing vector of the intrinsic horizon geometry, it will also be a symmetry
of the area element %. Thus, we find %, % = d(¢a - %) = 0, from which it follows that
the contraction ¢a I % must be the exact differential of a function f on the horizon. Now,
since ¢a is tangent to Sa, we have

—87G Ja = jg

(ba 1 w)% = }{ DA (bat %)= ¢ 2fIm[Wy] %, (6.3)
Sa

Sa Sa

where we have integrated by parts in the last equality and used 4.20. Thus, the angular
momentum of a generic rigidly rotating isolated horizon is indeed determined by the imag-
inary part of Wy, as expected. Note we have not assumed any extension of ¢ away from
the horizon in obtaining this result.

We can actually carry this second result a bit further. Consider an isolated horizon
which is not necessarily rigidly rotating. The construction 5.24 of the horizon surface term
in the Hamiltonian indicates that a Hamiltonian will exist for any vector field W whose
restriction to the horizon is fixed throughout phase space and is everywhere horizontal on
A. We can define an “angular momentum” for any such vector field by evaluating the
corresponding Hamiltonian surface term. When the vector field W is not a symmetry of %,
the function f appearing in 6.3 does not exist. However, recall that the covector w pulled
back to each Sa is divergence-free. Since there are no harmonic 1-forms on the 2-sphere,
the 1-form @ is therefore determined by its curl, given by 4.20. In this sense, the “angular
momentum” of an isolated horizon really is the 2-form 2Im[W¥;] %. This identification is
further supported by the definition 4.28 of non-rotating isolated horizons under which this

2-form vanishes.

6.2 DYNAMICS AND THE FIRST LAW

To state the first law of black hole mechanics for isolated horizons, we must first define a
notion of horizon mass. The strategy we will use to make this definition is to introduce a

time-evolution vector field ¢ on M and calculate the Hamiltonian generating motions along
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5% in phase space. That Hamiltonian will contain a surface term at A which is naturally
identified with the energy of the horizon relative to the evolution field ¢. In the next section,
we shall see there is a natural prescription for fixing the behavior of ¢ at the horizon which
will enable us to identify this energy with the mass.

To begin, we must specify boundary conditions on the evolution field ¢. At infinity,
one asks that ¢ is an asymptotic time-translation. That is, ¢ approaches an unit time-like
Killing field of the flat background metric at infinity used to define the notion of asymptotic
flatness. With this choice, the surface term at infinity in the Hamiltonian H? is equal to the
ADM energy of space-time relative to the evolution field ¢. This energy is denoted EX])DM'
At the horizon, however, there is no fixed kinematical metric and the physical metric there
needn’t admit any Killing field. Thus, specifying the boundary condition for ¢ at A is a bit
more subtle. Fortunately, substantial insight can be gained by examining the situation in
the stationary context. There, the stationary Killing field ¢ is related to the axial Killing
field ¢ and the horizon-generating Killing field by 2.12. Thus, the natural time-evolution
vector field in the stationary context has two components at the horizon: one along the the
null generator and a second, horizontal component which is proportional to an axial Killing
vector. The obvious strategy is to carry this decomposition over to the broader context
of isolated horizons. We have seen in the previous section that rigidly rotating isolated
horizons generalize the event horizons of stationary, axi-symmetric black holes. Thus, we
again consider a class of isolated horizons with a fixed, intrinsic axial symmetry ¢a. The
boundary condition on t at the horizon will be that there exists a constant Q(At) on A such

that
t+QWon €. (6.4)

This clearly mimics the structure of ¢ in the stationary context. Note that the vertical
component of ¢ is free to vary within the equivalence class [¢]. This is necessary because,
as we have seen in the previous chapter, infinitesimal diffeomorphisms W with a vertical
component must be state-dependent if the are to define Hamiltonian motions 8" in phase
space. In a more familiar terminology, this means we must allow (the boundary values of)
the lapse and shift to depend on the dynamical fields. This technique of using “live” lapse
and shift is routinely used in numerical relativity and in gauge-fixed calculations in canonical
gravity. Also note that, although ¢a is completely fixed, the horizontal component of ¢ in
6.4 is also state-dependent insofar as Q(At) is free to depend on the dynamical fields. That
is, Q(At) must be constant on each rigidly rotating isolated horizon, but may vary from one

to another. We will see shortly that the state-dependent character of ¢ plays a critical role
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in the formulation of the first law of black hole mechanics for isolated horizons.

To analyze the question of whether ¢’ is a Hamiltonian vector field, we must determine
whether the right side of Hamilton’s equations 5.21 is the exact variation of some Hamilto-
nian. We have already calculated the quantity in question for an arbitrary vector field W
in 5.22. Moreover, setting W = ¢ and using the boundary condition that ¢ is an asymptotic
time-translation, the surface term at infinity s the exact variation of the ADM mass. Thus,
the only potential obstruction to 6’ being Hamiltonian lies in the horizon surface term of
5.22. This surface term represents a 1-form Xy on phase space. It has been calculated in
the right side of 5.24 to be

t (s 1

XAO) = 5o f, A-000a 1 =)~ [5(-00a) S w] %+ 5%, (65)

where we have used the decomposition 6.4 of ¢ into its horizontal and vertical components

(t)

and x,’ denotes the surface gravity associated with the vertical component of ¢. Let us

analyze each term in this result. Using the definition 6.1 of angular momentum and the

(t)

constancy of €2’ over A, the first term can be written as the exact variation 5(QX)JA).

(t)

In the second term, ¢a is state-independent by definition, whence & only acts on € .

(t) (1)

Moreover, since ©,’ is constant over A for each horizon, 42, must be so as well and the

second term reduces to (5QX))JA. The combination of the first two terms therefore leaves

only QX)&]A. Finally, we use the zeroth law to calculate the last term in 6.5 and we find

(1)
X4 () = ;%G 5Ax+ Q0674 (6.6)

The right side of this expression is remarkably similar to the first law of black hole mechanics
2.11 in the stationary context (albeit without the electric charge term which is included in
the present calculation in appendix A). However, the two expressions are actually quite
different in character. While 2.11 is a simple identity satisfied by the functions 2.10, the
right side of 6.6 represents the contraction of the vector § with the 1-form X} on the phase
space of rigidly rotating isolated horizons. The condition that é' be Hamiltonian is simply
that the 1-form X} is closed:
0= dXh = —— dx® A dAs + dQD A dJa, (6.7)
87
where d denotes the exterior derivative on the (infinite-dimensional) phase space =. This
simple relation leads to some startling consequences for the dynamics of the horizon.
In principle, the horizon value of £ depends on the state of the dynamical fields in an

(t)

arbitrary way. However, if one knows the surface gravity x,’, the vertical component of ¢
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is fixed uniquely, and the rotational velocity Q(At) likewise fixes the horizontal component
of t. Thus, specifying the boundary value of ¢ on a given horizon is completely equivalent
to specifying the constants /@(At) and QX). Now, the differential identity 6.7 implies the
functions /{(At) and Qg) on phase space can depend on the state of the dynamical fields only
through the functions Aa and Ja. That is, the surface gravity and rotational velocity of a
rigidly rotating isolated horizon are implicitly functions of its area and angular momentum.

Moreover, these two functions are constrained to satisfy

0k (Aa,Ja) _ o 920 (Aa, Ja)
8JA 8AA

by 6.7. Thus, for a Hamiltonian generating time evolution to exist, the surface gravity and

(6.8)

rotational velocity of a black hole must depend only upon its area and angular momentum.
Other factors, such as the local geometry (i.e., distortion) of the horizon, cannot affect these
extrinsic parameters. Note, however, that these arguments do not indicate which surface
gravity and rotational velocity functions one should pick. Correspondingly, for any choice of
these functions, the Hamiltonian generating evolution along the corresponding t will exist.
The horizon surface term in that Hamiltonian is a natural measure of the energy EX) of
the horizon relative to the evolution field ¢. By virtue of 5.24 and the calculations above,

the energy is a function only of Aax and Ja and satisfies

(1)
(1) Ep (Aa,JA)
5EA (AAM]A) = 7871’

This relation is known as the generalized first law of black hole mechanics. The analogy to

5Ax + QU (AN, Ja)8TA. (6.9)

the usual first law 2.11 is clear. However, since there is generally no canonical choice of a
single, “correct” evolution field at the horizon, there is no canonical definition for the mass
of the isolated horizon. We will discuss how such a canonical choice of ¢ can be made for

certain classes of isolated horizons in the next section.

6.3 HORIZON MASS

We have seen that for any pair of functions HX)(AA, Ja) and QX)(AA, Ja) satisfying 6.8, the

evolution field ¢ is determined uniquely on each horizon and &' is Hamiltonian. It follows
that the energy EX)(AA, Ja) of the horizon relative to evolution along ¢ is well-defined and
satisfies the generalized first law 6.9. However, this first law holds for an infinite variety of
evolution fields ¢ (one for each choice of the surface gravity and rotational velocity functions)

and their corresponding energies. In many physical applications, one is interested in the
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properties of a specific space-time, rather than in the structure of phase space. Then, it is
useful to have at one’s disposal a single notion of horizon energy, analogous to the ADM
energy in the rest frame at infinity. This quantity could be interpreted as the horizon mass.
In this section, we will see the horizon mass can be defined uniquely for any class of isolated
horizon space-times which admit a “sufficiently complete” set of stationary examples. The
general principles we will present are of a somewhat different character than most of the
results in this thesis in that they are based, in large part, on conjecture with support
from several specific examples. However, after the general discussion, we will analyze the
definition of mass in vacuum Einstein theory in detail. These results are not based on
conjecture at all; they are rigorously derived. In addition, we will discuss the case of
Einstein—Maxwell isolated horizons in similar detail in appendix A.

As with an equilibrium state of a thermodynamic system, an isolated horizon is charac-
terized by a certain set of “extrinsic parameters.” Generically, these parameters include the
horizon’s area Aa, angular momentum Ja, surface gravity &4, rotational velocity €4, and
perhaps several other parameters describing the matter fields at the horizon. These matter
field parameters can be distinguished by three properties: (i) each parameter should be
preserved along the generators of A as a result of boundary conditions (i.e., without using
equations of motion in the bulk of space-time), (ii) the “energy density” e in 4.12 should be
expressible in terms of them, and (iii) the first law should be expressible in terms of them.
This characterization is currently little more than a rule of thumb; it has been demonstrated
to be sufficient in a wide variety of examples, but there exists no general argument in its
support as yet. We will examine the case where there is an electro-magnetic field at the
horizon in appendix A. In addition, this rule of thumb is sufficient to identify the “extrinsic
parameters” of an isolated horizon in the presence of dilatonic [34, 9], Yang—Mills [35, 9]
and Klein-Gordon [36] matter fields. In all these cases the general principles for the mass
definition we are about to state apply.

The key idea we use to define the horizon mass is that the existence of a “sufficiently
complete” set of globally stationary isolated horizon systems gives rise to a natural candi-
date for the “rest-frame” evolution field ¢y on all isolated horizons. Unlike a thermodynamic
system, there is a natural choice of which parameters should be regarded as independent
for an isolated horizon. These are the ones whose variations appear in the first law (area,

angular momentum, etc.); all other parameters can be regarded as functions of these!. It

!"There may be some other independent parameters of the horizon which are, however, discrete. Thus,
they cannot be varied in the first law and therefore do not appear. This situation holds, for example, for
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is the connection with the Hamiltonian formalism which picks out this natural set of in-
dependent parameters in the isolated horizon case. Now, the specific sense of the phrase
“sufficiently complete” used above is that, for each set of values of the independent horizon
parameters, there exists a unique stationary black hole solution. At first, this statement
seems at odds with the well-known violation of the “no-hair” conjecture in, for example,
Einstein—Yang—Mills theory. The conjecture states that any two black holes can be distin-
guished by the values of a certain collection of charges at infinity and there exist explicit
solutions in Einstein—Yang—Mills theory which violate this conjecture . The problem arises
from the topological characteristics of the Yang—Mills bundle in the bulk of space-time,
leading to a discrete family of solutions which share the same asymptotic data at infinity.
However, even in these cases, the relevant parameters at the horizon seem to be sufficient
to distinguish the various stationary solutions [35, 37]. This suggests a new “no-hair” con-
jecture for isolated horizons — that any pair of distinct stationary black holes will have
different values of the relevant isolated horizon parameters — which, if it is true, will give
a proper meaning to the phrase “sufficiently complete” in the arguments made here. Let
us suppose this “no-hair” conjecture holds. Then, it is natural to ask that the evolution
field t on each globally stationary solution agrees with its stationary Killing field. With this
choice of ¢, we can simply calculate the surface gravity, rotational velocity, and any addi-
tional parameters of the matter fields we may need on the stationary solutions. However,
if the stationary solutions are in one-to-one correspondence with the values of the inde-
pendent horizon parameters, then the dependent parameters of any isolated horizon with
those same independent parameter values are determined. This happens because the first
law implies the dependent parameters can only depend on the state of the system through
the independent parameters. In turn, when the dependent parameters (surface gravity, ro-
tational velocity, etc.) are fixed, then the evolution field is fixed for an arbitrary isolated
horizon. Thus, fixing the evolution field to equal the stationary Killing field only for the
stationary solutions actually fixes the evolution field on every isolated horizon. We denote
this preferred evolution field by #g. It defines a natural “rest frame” for the isolated horizon
and, correspondingly, the energy EXO) will be used to define the horizon mass.

Let us now examine the procedure outlined above in the specific case of vacuum gravity.
Note that while the general argument may be somewhat vague, the procedures for the
specific cases treated here and in appendix A are entirely precise. In vacuum gravity, the

black hole uniqueness theorems [23] imply the only globally stationary and axi-symmetric

isolated horizons in Einstein-Yang-Mills theory [35].
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solutions to Einstein’s equations with regular event horizons are the Kerr black holes. These
black holes are parameterized by two independent parameters which can be taken to be the
area and angular momentum of the event horizon. The surface gravity and rotational
velocity of the event horizon are computed in terms of these independent parameters in
2.10 (with @ = 0). Now, the key point is that the evolution field ¢ is determined on every
isolated horizon in vacuum by fixing the functions HX)(AA,JA) and Q(At)(AA,JA). If we
insist the evolution field on the Kerr solutions agrees with the stationary Killing field with

its conventional normalization at infinity, then these functions must be given by
2GJA

RY — 4G?J%
(t0) _ e Ai _ and Qi) — - —. (6.10)

One can easily check these functions satisfy 6.8 as indeed they must since the first law

K

2.11 holds in the stationary context. This prescription fixes an evolution field 5 on every
isolated horizon. The energy associated with this evolution field defines the mass of the

isolated horizon and, using the generalized first law 6.9, we can compute that mass to be

VR 1 4G ]
My = E{ = e

Note this formula gives the same value as 2.10 does for the ADM mass of the Kerr solutions.

(6.11)

The origin of this result is not mysterious: the generalized first law 6.9 gives Ma the
same relation to H(Ato) and Q(Ato) that the usual first law 2.11 given the ADM mass to the
surface gravity and rotational velocity on the Kerr solutions. Since /{XO) and QXO) take
their values from the Kerr solutions, we must find the same mass. This fact can also be
justified using a general symplectic argument [7]. Consider the Kerr solutions as points
of the isolated horizon phase space. When the space-time evolution vector tg is a Killing
vector on the stationary solutions, the phase space evolution vector 6% may be, at most, a
gauge transformation at those stationary points of phase space. The motion along 6% is a
therefore degenerate direction of the symplectic structure on the stationary points. Since
this implies the right side of Hamilton’s equations 5.21 will vanish, the numerical value of the
Hamiltonian generating evolution along ¢y must be constant on each connected component
of the submanifold of stationary points in phase space. In the Einstein(-Maxwell) case,
there is only one such connected component and, moreover, the fundamental constants of
the theory do not allow the construction of any quantity with units of mass. Thus, the

value of the total Hamiltonian on stationary solutions must be zero:

H = H' — H? = MA — Mapy = 0. (6.12)
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On more general solutions, of course, Mapn is greater than Ma. The difference is expected
to equal to the energy contained in radiation in the bulk of space-time. If the the isolated
horizon extends to future time-like infinity T and the geometry there is sufficiently regular,
one can argue (see [7] in the undistorted, non-rotating case) the difference is precisely the
total energy radiated across .#T. Hence, Ma generically equals the future limit of the
Bondi mass. These considerations give additional support to our interpretation of Ma as
the horizon mass.

Finally, given the canonical evolution field ¢y, we can drop the superscript from the
surface gravity and rotational velocity. The generalized first law 6.9 then takes the familiar

form

K
SMp = —2-5AA + Q4 6. 1
A= a N R VNN (6.13)

This is the first law of black hole mechanics, adapted to (rigidly rotating) isolated horizons in
vacuum Einstein theory. In contrast to the usual formulation of first law 2.11, the quantities

that enter this formula are all intrinsic to the horizon.
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Discussion

Let us begin with a summary of the main ideas and results of this thesis.

In Chapter 3, we introduced the notion of an isolated horizon (A, [¢]). While one needs
access to the entire space-time to locate an event horizon, isolated horizons can be located
quasi-locally. Event horizons of stationary black holes in Einstein—Maxwell theory do qualify
as isolated horizons. However, the definition does not require the presence of a Killing field
even in a neighborhood of A. Rather, physically motivated conditions are imposed on the
intrinsic geometric structure of the horizon itself. These conditions imply the Lie derivative
along [{] of both the intrinsic (degenerate) metric ¢ and the intrinsic connection & vanish for
generic isolated horizons. In this sense, the definition mimics the essential local structure
of a Killing horizon. In addition, the area of an isolated horizon is always constant in

” However, the space-time as

time, whence the horizon itself is isolated or “in equilibrium.’
a whole may admit radiation, provided only there is no flux across the horizon surface A.
Therefore, such space-times can effectively model the late stages of a gravitational collapse.
Furthermore, the quasi-local nature of the definition and the possible presence of radiation
suggest the space of solutions to the Einstein—-Maxwell equations admitting isolated horizons
is infinite-dimensional. This is in striking contrast to the space of stationary black hole
solutions which is finite-dimensional. Recent mathematical results by a number of workers
[32, 10, 30, 31] show this expectation is indeed correct.

In chapter 4, we analyzed the structure of an isolated horizon. We were able to define
surface gravity for a general isolated horizon and to show it is constant over A. This result
extends the zeroth law of black hole mechanics from the stationary context to the much
broader context of isolated horizons.

Chapters 5 and 6 were concerned with a formulation of the first law of black hole
mechanics for a class of rigidly rotating isolated horizons. In order to state the law, we

used Hamiltonian techniques to motivate definitions of mass and angular momentum for
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an isolated horizon. These definitions are viable for any such horizon and require neither
a Killing field nor any reference to infinity. Moreover, all the definitions for the “extrinsic
parameters” of an isolated horizon are entirely local to the horizon. In contrast, conventional
treatments in terms of stationary black holes define some quantities at the horizon and
others at infinity. For this reason, the standard arguments fail to incorporate any non-
stationary situations such as one would expect to arise from a gravitational collapse. The
Hamiltonian formalism gives rise to a generalized first law of black hole mechanics which
relates the “extrinsic parameters” of an isolated horizon. This result sheds new light on the
physical origin of the first law: it is a necessary and sufficient condition for the existence
of a Hamiltonian generating time evolution on the phase space of space-times admitting
isolated horizons.

Ours is not the first application of Hamiltonian techniques to the laws of black hole
mechanics. In particular, Brown and York [38] and Iyer and Wald [26, 27] have used such
techniques in the past, but there are important conceptual differences to our framework
in both cases. While Brown and York do not restrict themselves to stationary solutions,
the focus in their work is on a time-like outer boundary surrounding a space-time region
containing a black hole. Our focus, of course, is on the inner boundary at the horizon of
the black hole. The general Hamiltonian techniques we have used, particularly the covari-
ant phase space construction, are similar to those used by Iyer and Wald. However, their
formulation is tailored to the problem of perturbing stationary solutions away from sta-
tionarity. While not every such non-stationary perturbation can be modeled by an isolated
horizon, the present formalism incorporates situations which are not close to stationarity
in any sense.

From a geometrical perspective, the notion of an isolated horizon overlaps with that of
a trapping horizon as introduced by Hayward [39]. Isolated horizons are a special case of
trapping horizons, restricted primarily in that their expansion is zero. This restriction is
essential to capture the notion that the horizon is in equilibrium, which in turn underlies
the zeroth and first laws of black hole mechanics. Furthermore, our method of defining the
surface gravity k and the mass Ma of isolated horizons differ from those used by Hayward for
trapping horizons and consequently our treatment of the two laws is also different. (To our
knowledge, in the context of trapping horizons, a satisfactory definition of surface gravity
is available only for space-times with specific global symmetries, though they needn’t be
stationary.) However, the notion of isolated horizon is clearly inadequate for the treatment

of dynamical situations which are considered, for example, in the second law and it is these



situations that provide a primary motivation in the analysis of trapping horizons.
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Appendix A

Isolated Horizons in Einstein—Maxwell Theory

The purpose of this Appendix is to examine the additional terms which arise in the first law
of black hole mechanics when a non-vanishing electromagnetic field is allowed at the horizon.
The analysis of the boundary conditions and their consequences presented in Chapters 3
and 4 already includes the Maxwell field. Thus, we need only consider its contribution to
the action and phase space formalisms of Chapter 5 and to the first law discussed in Chapter
6. Where appropriate, we will affix a subscript “G” to the quantities (action, symplectic
structure, Hamiltonians, etc.) discussed in the main body of the paper to emphasize they
contain contributions only from the gravitational field. Likewise, the subscript “M” will
denote contributions arising from the Maxwell field.

The Maxwell field is encoded in a U(1) connection whose connection 1-form on space-
time is denoted A. We will assume A is globally defined on M (i.e., there is no magnetic
charge) and therefore completely describes the Maxwell field. The gravitational field will
continue to be encoded in the pair (e, D) as in the main body of the thesis. The total action

for Einstein—Maxwell theory in these variables is
1
Stocle, Dy Al = Sale, D]+ Swle, Al with  Sule, A = 8—/ T A T, (A1)
T JM

where Sgle, D] is given by 5.1. The dependence of the Maxwell action on the frame field e
is solely due to the presence of the Hodge dual in its integrand. The equations of motion
derived from this action are the same as before, but with the right side of the Einstein
equation 5.6 proportional to the stress-energy 4.22 of the Maxwell field. In addition, the
minimization of A.1 with respect to the Maxwell connection A yields the usual Maxwell
equation

dxF =0. (A.2)

Note the Maxwell field strength is also curl-free because of the Bianchi identity dIF = 0.
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The variation of the total action acquires new terms due to the Maxwell field:

1 1
5(Sule, A]) = —/ AN+ T 4 T A [§(+F) — #(5T)] + —/ SAAF.  (A.3)
81 Jm A7 JAUME
The first term of this variation gives the Maxwell equation A.2, while the second is propor-
tional to the variation e of the frame field. It is this term which generates the coupling of

matter to curvature in the Einstein-Maxwell equations and, indeed, one finds
F A [§(+IF) — *(6T)] = —87 Sel A +T(ey). (A4)

Comparing this formula with the term 5.5 arising in the variation of the gravitational action,
one finds the normalization and sign conventions are correct to give the usual Einstein—
Maxwell field equation G4, = 87G'T . Finally, the second integral in A.3 arises from an
integration by parts in the bulk. The surface term at infinity vanishes due to standard
kinematical fall-off conditions; no surface term is needed in the action A.1.

A key question for the action A.1 is whether it gives a well-posed variational problem.
The surface terms at M* in A.3 vanish when the fields are held fixed there, but we must
show the surface term at A vanishes due to the boundary conditions. The argument which
shows it does is very similar to that used in chapter 5 to show the analogous term in the

gravitational action vanishes on A. For the surface term in question, one has
% (SANTF) = —(Ls A) A #F, (A.5)

where we have used 4.24 and (the variation of) 4.27 to simplify this expression. Since §¢
is proportional to £ by a constant, the remaining Lie derivative on the right side of A.5
vanishes by 4.27. Thus, since §A vanishes at Si, the integrand in the surface term at
A in A.3 vanishes everywhere. The total action A.1 is therefore “differentiable” and the
variational problem is well-posed.

We now come to the construction of the covariant phase space for Einstein—-Maxwell
theory. The space itself again consists of the solutions to the equations of motion of M,
though these equations, of course, now are the fully coupled Einstein—-Maxwell equations.
The second variation 5.15 will acquire a new surface term involving the Maxwell field:

81 (625Mm) — 62(615Mm) — [61,62]Sm = ;—1 5 AN Sa(xIF) — S3A A 61 (xIF). (A.6)

T JAUMZ
We must show the integrand for the surface integral over A here is once again an exact

3-form. Using the decomposition 4.33 of the Maxwell potential A, we find

51/A A 52(*]F) = —d(SlX A ]EA, (A?)
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where Ea := —«I" denotes (lift to A of the) the electric flux out of the horizon defined in
chapter 4. SinceThe Maxwell equations at the horizon imply the exterior derivative of this
flux 2-form vanishes, the right side of A.7 is exact, as required. The symplectic structure is
therefore well-defined in the presence of a Maxwell field. The formula 5.17 for the symplectic

structure will acquire the additional term
-1 1
(61, 8) = —/ 51A A Sy (+IF) — G3A A 6y (+IF) — —j{ b1y 6.Ea — by 6 Ea, (AS)
47 M 4 SaA

where care has been taken with the orientations of Sa in the surface integrals. (See the
discussion following 5.17 for details.)

The kinematical diffeomorphisms of the horizon are generated by the same vector fields
W in the Einstein—-Maxwell case as in the vacuum case. The corresponding motion in phase
space induces the same transformation on the geometric variables as before and, in addition,

Lie drags the Maxwell connection:
WA= Fw A=W JF +d(W 1 A). (A.9)

One can easily check that §" (xIF) is also given by the Lie derivative of the background
field. Again, we must analyze the Hamiltonian properties of this motion in phase space.
Hamilton’s equations in the Einstein—-Maxwell case are given by 5.21, but with the symplec-
tic structure given by the sum Qo (6, 5W) of the Maxwell and pure gravitational pieces.
Furthermore, the formula for §" y acquires a “correction” term, just as 6"V does in 5.23.
The point is the variation 6"y cannot be identified with the Lie derivative of y when W
has a vertical component at S, since doing so would violate the “gauge-fixing” condition
4.32. Thus, we set

Wy = .,?Wx—I—q)gW), (A.10)

where (I>(AW) denotes the electric potential associated with the vertical part of W at Sj.

This is directly analogous to the situation with the gravitational variables described by
5.23. The difference in sign arises because %y = —<I>(AZ). Using A.10 in the new term in
the symplectic structure gives
-1
Oni(61,65) = _j{ §[(w 2 A)Ea] — (5w A)Ea — 8V 5EA
Sa

i (A.11)

1
Seo

As in the vacuum case, an allowable infinitesimal diffeomorphism W which is everywhere
vertical on Sa and vanishes on S, generates a gauge transformation. These diffeomor-

phisms may safely be excluded from the remainder of the discussion. Thus, the potential
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symmetries of the horizon are generated by vector fields of the form 5.25, with constant
vertical component.

To define angular momentum for horizons with electric charge, we again focus on a
class of isolated horizons which are rigidly rotating with respect to a vector field ¢ on A.
Angular momentum is defined as the horizon surface term in the Hamiltonian generating
motions along a space-time vector field ¢ which equals ¢ on A. The formula which replaces

6.1 in the presence of the Maxwell field is

1 1
wa b (pr Jw)%—— ¢ (pa J A)EA. (A.12)

—Ja = HS =
A a Am Js,

The appearance of the second integral involving the Maxwell field, in this formula for angular
momentum may seem surprising at first. Indeed the first integral, involving the gravitational
degrees of freedom, reduces to the Komar expression as in the vacuum case. However, if A is
the event horizon of a Kerr—Newman black hole, that Komar formula measures the angular
momentum at the horizon. Meanwhile, 2.22 expresses the angular momentum at infinity in
terms of that at the horizon and an additional horizon surface integral involving the Maxwell
field which is of exactly the same form as the second term in A.12. Thus, Ja reproduces the
usual angular momentum at infinity in the stationary, axi-symmetric context. However, it
is manifestly (quasi-)local to the horizon and is consequently independent of any external
radiative fields for generic isolated horizons.

To define mass for electrically charged isolated horizons, we repeat the argument from
the vacuum case concerning the 1-form X7 (§), which is defined as the horizon surface term
in Qrot(8,6%). The new contribution to this surface term can be discerned from A.11. Using
the modified definition A.12, we see the only new contribution to 6.6 in the Einstein—-Maxwell

case arises from the last term of the horizon integral in A.11. Thus, 6.6 becomes

(t)
XL (5) = 8’% 5As+ V574 + 0W5Qa. (A.13)

This resembles the first law in the presence of electric charge. This relation shows the surface
gravity, rotational velocity and electric potential of the horizon must all be functions of the
three variables Ap, JAo and QA if the evolution along ¢ is to be Hamiltonian. Picking these
functions to be given by 2.10 is the unique choice which allows t to be extended from the
horizon to the stationary Killing vector in the bulk for the Kerr-Newman solutions. This
(o)

choice of ¢ = £y defines the mass of any isolated horizon as the energy surface term Fj

in the associated Hamiltonian. Once again, the mass can be expressed in terms of the
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independent variables using the first law. The result is the same as the mass formula in
2.10.






Appendix B

The Newman—Penrose Formalism

The Newman-Penrose formalism [40] encodes the tensorial equations of general relativity
in a large number of scalar equations. Doing so can often lead to simplifications in one’s
understanding of a given physical problem, but only at the expense of introducing a large
number of new definitions. More complete reviews of the formalism than that presented
here may be found in [41, 42, 43]. However, note the sign conventions used throughout this
thesis agree with those of [18]. Thus, the metric signature of space-time is (—, 4+, +,+) and

the Riemann curvature tensor is defined by
Rupitws = (VaVi — Vi V,)w. (B.1)

for any 1-form w. on space-time. Both of these conventions differ by an overall minus sign
from those used in the standard references [41, 42, 43]. Thus, some of the formulae below
will differ by signs from those found in the literature.

The Newman—Penrose equations are stated in terms of a tetrad (¢, n, m, m) of vectors on
space-time. The vectors £ and n are everywhere null, while m and m are everywhere space-
like and complex-conjugate to one another. Although space-time itself is a real manifold,
complex vectors are used so the inner product of any tetrad vector with itself is zero. For
this reason, (¢,n, m,m) is known as a null tetrad. The only non-vanishing inner products
in the (—, 4, +,+) signature are £-n = —1 and m - m = +1.

The space-time connection V is encoded in the Newman—Penrose formalism by a set of

twelve spin coefficients:

*Vm, %(f“Vna—maVﬁza) m*Vn,

D=V, K € T
A=V, T o v (B.2)
0=V, o Jé; I
8: =V « A
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These definitions can also be stated implicitly as
Dl =(e+e)f —km — km Dn=—(e+é&n+mm+7am
Al=(y+yt-tm—mm  An=—(y+7)n+vm+vm

bt=(a+p)—pm—om  dn=—(a+p)ntpum+Aim (B.3)

Dm=7l—-rn+(c—€m Am=vl—Ttn+ (y —y)m
Sm=M—an+ (8- a)m dm = jl — pn+ (o — B)m

The spin coefficients can be interpreted geometrically as follows. The quantities €, v, «
and (8 can be thought of as “gauge” parameters describing the parallel transport of tetrad
vectors along one another. They represent the freedom available in the choice of the null
tetrad from point to point. The coefficient £ measures the failure of £ to be geodetic, as can
be seen from the first equation in B.3. Equivalently, x describes the m and m components
of the twist covector w®) := x(£ A df) of £. When x vanishes, the real (imaginary) part
of p measures the expansion (twist) of the null congruence generated by ¢ and o measures
its shear. Likewise, when v vanishes, ¢ and A measure the expansion, twist and shear of
the null congruence generated by n. Finally, when s vanishes and p is real, the quantity
7 — (a+ ) measures the failure of the covector n to be hypersurface-orthogonal within the
null hypersurface generated by £. The coefficient 7 can be interpreted in a similar way, but
with the roles of £ and n reversed. Finally, all the definitions above are invariant under the
interchange

e -y axs —p

—v T ﬁ —T (B4)

4

n

1T

K

11
Y

m m
p=—p o= =A
The discussion to follow is simplified somewhat by exploiting this discrete symmetry.
Just as the space-time connection is encoded in the twelve scalar spin coefficients, its
curvature is encoded in a collection of fifteen scalars known as the Newman—Penrose cur-
vature components. Recall the Riemann curvature in a 4-dimensional space-time can be

expressed as

R
Raped = Capeq + 29[a[cRd]b] - g Ga[c9d)b) (B5)

where Cp.q is the (trace-free) Weyl tensor, R, is the Ricci tensor, and R is the scalar
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curvature. In terms of these tensors, the curvature components are defined as

Vo = Cupeal®m®cm? Uy = Cupeal®m®0en? Uy i= Cupeal®m’msn?
o a, b-c d o —a b_c d
Us = Cupeglin’mn Uy = Chpeamn’mn
(OIS %Rabfaﬁb gy 1= %Rabfamb Do 1= %Rabmamb
_ _ B.6
D= %Rabf"“mb Py = iRab(f"“nb + m”“mb) (OIPEES %Rabm”‘nb (B.6)
q)go = %Rabmamb q)gl = %Rabmanb @22 = %Rabn“nb
R
T4

Note the Ricci components are related to one another by ®;; = (i)]-i due to the reality of
the Ricci tensor. The differences in sign between our definitions of the Ricci curvature
components and those found in the literature arise from the combination of our signature
choice and the sign difference in the definition of the Riemann curvature.

The tetrad one uses to define the spin coefficients and connection components is not
canonically fixed on space-time. The transformations which relate the different choices of
tetrad can be expressed as combinations of three distinct elementary types. The first is
known as a spin-boost transformation and is shown in table B.1. This simply rescales the
null vectors £ and n and rotates the space-like vectors m and m into one another. The second
type of elementary transformation is known as a null rotation about £ and is illustrated in
table B.2. This transformation holds the null vector ¢ fixed while combining n, m and m to
form a new tetrad. The third type of elementary transformation consists of a similar null
rotation holding n fixed. It can be formed from the null rotation of table B.2 together with
the interchange operation described by B.4.

Since the curvature is derived from the space-time connection, the curvature components
must be given by derivatives of the spin coefficients. The identities which relate the two sets
of variables are sometime called the Newman—Penrose “field equations,” though they have
nothing to do with the true field equations of general relativity which relate the curvature
components ®;; to the matter fields. These equations break naturally into several groups.
First, the optical scalars p and ¢ associated with the null vector £ “evolve” along £ according

to

Dp—(e—}—é)p—gm—l—(3a+ﬁ)m:p2+05+mﬂ—kr+¢00 (B.9)
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L f=d’t n—sn=a"’n m—m=em
i =a%e®x E= a2[e + D(lna + )] F=e 20
7 =20 ¥ = a_2['y + A(lna + 16)] b =ate
5 =a% 8= 62“;?[6 +é(lna + i9)] fp=a 2y
. § . (B.7)
p= a2p a = 6_2‘9[0z+5(lna—|—i9)] X=a"2e" 1)
Uy = a4e4i9\110 Uy = a_2e_2i9‘113 Do = a’ Do b = By
\Tfl = a262i9\111 @4 = a_4e_4i9\114 @01 = a2e2i9¢01 Ci)lg = a_2e2i9¢12
Uy =0, A=A Boy = " gy $op = a0y
Table B.1: A spin-boost transformation with real parameters a and 6.
Li=1¢ m—-m=m-+cl n—n=n+cm+cm+ccl
K=K F=T1+co+¢Ep+cek ’A}/Z’7+EO{—|—C(T—|—6)—|—CE(p—|—6)—|—C20'—|—C2EK
E=¢€e+ck o?:oz—|—ce—|—cp—|—c2ﬁ 5\:)\—|—C7T—|—2CO(—|—02(p—|—26)—|—CSI<J—|—CDC—|—SC
o6=0+ck ﬁ:ﬁ—l—ca—l—ée—kcéﬁ /]:u—|—ZCﬂ—|—E7r—|—c2a+2066+c26ﬁ+EDc—|—5c
p=p-+ck f#=m42ce+c’k+ De f/:1/—|—c(2'y+u)+E)\—|—c2(7'+2ﬂ)+cE(7r+2a)+c3o
+ 026(p + 2¢) + cer 4+ Ac+ cde+ ede + ceDe
(B.8)
A=A Do = Do
By = ¥ do1 = Poy + eoo
By =, +cP Doz = Pz + 26001 + & Poo
Uy = Uy +2¢0; + 2y B11 = B11 + o1 + EP1o + 2P0
Ws = Ws + 3¢ + 37T + P D1y = @1z + cPoz + 26011 + 2¢8Po1 + & P10 + & Poo

Uy = Uy +4cWs 4 62T, + 47T, + T, Doy = Doy + 2¢P1 + 26Ba; + P Pog + 2c6011 + & Do

+ 2025(1301 + 2652(1310 —+ 0252(1300

Table B.2: A null rotation about ¢ with complex parameter c.
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Do —3e—€o -0+ B8+ a)s=(p+p)o—(1—7)k+ VY. (B.10)

When x = 0 and /£ is geodetic, these are identical to the Raychaudhuri equations 4.5 and
4.6, together with a third equation describing the “evolution” of the twist of £. Second, the

optical scalars g and A associated with n “evolve” along ¢ according to

Dp+(e+pu—90r—(B—a)yr=771— v+ pu+ol+ ¥+ 2A (B.11)
DA+ (3¢ =X — 61 — (o — B)m = 7% — R + pA + ap + Dy (B.12)
Third, in addition to these evolution equations, there are “constraint” equations which

entangle the two pairs of optical scalars. These equations link the derivatives of all four

quantities in the space-like directions normal to both £ and n:

3p = (B+a)p—d0+ (B3a—p)o=(p—p)r+ (- i)k — V1 + oy (B.13)
A+ BB—a)d—dp—(atBlu=(n—p)r+(p—pv—Vs+ .  (B.14)
Fourth, there are formulae which describe the curvature of the connection associated with

the gauge freedom in the choice of tetrad. Pulling these equations back into the 3-planes

orthogonal to £ yields

Da+ (e — €)a — de+ (a+ B)e — er + vk — 86 — ap = pr — kA + Py (B.15)

DB —(e—¢pB—dc+ (f+a)e—en+vk—pp—aoc =o0m — K+ Uy (B.16)

da+ (B —a)a—8p+ (a—B)f —e(p— i) —v(p—p) = pu— Ao — Uy + &y + (B.17)

All of the “field equations” we have stated thus far involve derivatives only along the 3-planes
orthogonal to £. One can formulate an analogous set of equations involving derivatives in
the 3-planes orthogonal to n. Although this second set of equations are not particularly

useful in this thesis, we will state them for completeness. The “evolution” equations along

n are

B.18
B.19
B.20
B.21

AM+(7+7)M_5V_(3ﬁ+@ V:_NZ_AX_VT—FEW—@QQ
AN+ 3y — A= dv — (Ba +

(B.18)
(B.19)
Ap—(y+7)p—6r+(a—3 (B.20)
(B.21)

Since the congruences generated by £* and n® intersect in surfaces which are transverse to

both vectors, the “constraint” equations will be the same as before. However, there are also
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a set of equations which relate derivatives of the spin-coefficients in the 2-planes tangent to

both ¢ and n:

Dr—(e—r— A+ By +y)c=(t+7)p+ (T+ 7)o+ V) + Oy (B.22)
Dv+@Be+ev—Ar—(y—y)n=(n+7T)p+ (T + 1)\ + U3+ &yy. (B.23)

Finally, there are components of the “gauge” curvature equations along the 3-planes or-

thogonal to n and in the 2-planes tangent to both ¢ and n:

AB—(y =B -8y — (B+a)y+yT —ev +al+ Bu = —ur + ov — By (B.24)
Aa+(y=7)a—8y —(a+f)y+7T —ev +aii+ A = —Ar +vp — U3 (B.25)
Dy+(e+&y—Ae+ (y+3)e—p(T+7m)—a(r+7) =10 —vk + Uy + &1 — AB.26)

These eighteen equations allow one to compute the space-time curvature from the spin
coeflicients associated with a given tetrad. They are somewhat over-complete in the sense
there are eighteen complex equations to determine only eight complex (¥; and ®;; with
j > 1) and four real (®;; and A) unknowns. The redundancy, however, allows one some
freedom to choose the most convenient subset of equations.

The last set of equations in the Newman—Penrose formalism encode the Bianchi identities
satisfied by the space-time curvature. These necessarily involve derivatives of the curvature
components. The equations stated here are in a slightly different form from the usual
presentations, but these are better suited to application to isolated horizons. The Bianchi

identities involving derivatives only along the 3-planes orthogonal to ¢ are

D(\Ill — q)Ol) — 26(‘111 — q)Ol) + 5@00 — 2(@ + ﬁ)q)oo — 5\110 + 40(\110 (B )
27
= 71"110 + 4p‘1’1 - 5(3‘112 - 2@11) - 25@01 - 20"1)10 + .‘7;/(1)02 - ﬁq)oo

D(\IIQ — q)ll — A) + 5@10 — 2@@10 — 5\111 + 205\111
(B.28)
= —A\IJQ + 277'\1}1 + 3p\I}2 - 2/@'\1}3 + [Lq)oo - 2,5(1)11 - O'q)go + 2Re [qu)zl - 71'@01]

D(\Ilg — q)Ql) —|— 26(‘113 — @21) —I— 5@20 —|— Q(ﬁ — @)@20 — 5(‘112 + 2A) (B )
.29
= —QA\I}l + 7T(3\IIQ - 2(1)11) + qulg - K,\I}4 + 2,&@10 - 77'(1)20 - Qﬁq)gl + I%q)gg.
These are the Bianchi identities which are most useful in the isolated horizon context. There

is a second set of equations which involve only derivatives in the 3-planes orthogonal to n.
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These include

A(\Ill — @01) — 2”)/(\111 — @01) — (5(\112 + 2A) + gq)og — 2(04 — B)@OQ (B 30)
= I/\IIO - Q[L\Ill - T(3\IIQ - 2@11) + 20'\113 - ﬁ@oo + 2,&@01 + fq)og — 2pq)12

AUy — @y — A) — 33 — 263 + 305 + 25D,
(B.31)
= 21/\1}1 - 3,&@2 - 27'\1}3 + U\I}4 - 2,&@11 + Aq)og - pq)gg + 2Re [Tq)gl - I/(D()l]

A(\IIB - (1)21) + 2")/(\113 - (1)21) — Uy — 460, + 5(1)22 + 2(a + B)(I)m (B 32)
=v(3Wy — 2@y — 4puVs — Wy — VD0 + 2A P12 + 2Py + T2

Finally, there are several Bianchi identities which involve derivatives along both ¢ and n.

These are

DUy 4+ 4eWy + Adgg + 2(y — 7)Pgo — §(Vs + Po1) — 2a(V3 + Pyy)

=AYy + @) +47Ws + pUy + 20D — 1Py — 27Dy + 5Py (B3
AWy — 4y Wo + DPgy — 2(€ — €)Po2 — 6(Vq + DPo1) + 28(¥y + $o1) (B.34)
= —uWo — 417V + 0(3U3 + 2P11) — APgg + 27Pg1 + pPo2 — 26P12
D(Vy 4 2A) + AP — 2(7 + 7)Poo — (V1 + Po1) + 2a(¥q + Po1) (B.35)

= —A\IIO + 271'\1}1 + p(3\112 + 2@11) - 2:‘6\1}3 - ﬂq)oo - 277"1)01 - 27’@10 + 5’@02
AWy + 2A) + DPgy + 2(e + €)Pog — §(Vs + Poy) — 26(Vs + o)

) (B.36)
= 21/\111 - ,LL(3‘112 + 2(1)11) - 27*1’3 + 0'\114 - Aq)go + 271'@12 + 27?@21 + ﬁq)zg
D®yg + 2e®13 + Adgy — 2yPg; — §(P11 — 3A) — 3Pga + 2(a — B) P2
= I;QOO — (/L + 2/1)@01 — X(DIO + 2(77' — T)‘I)ll (B37)

+ (7= T)Po2 + (2p+ p) P12 + 0Py — KDyy.

This concludes the presentation of the Newman—Penrose formalism.
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