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Abstract

The aim of this work is to investigate symmetry based approaches to the problem

of black hole entropy. Two sets of symmetries are presented. The first one is

based on the new framework of isolated horizons which has emerged recently and

which provides a local description of black holes. We describe this framework

in 2+1 dimensions and then use it to investigate the question of black hole

entropy. We show that the natural symmetries of isolated horizons do not suffice

to explain the entropy of black holes. We then turn our attention to a different

set of symmetries who are distinguished by the fact that they are only defined

in a neighborhood of the horizon and do not have a well defined limit to the

horizon. It is then shown that these symmetries provide an explanation of the

black hole entropy. We then consider the significance of the results obtained for

the search of a theory of quantum gravity.
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Chapter 1

Introduction

Black hole entropy has received so much attention from theoretical physics over the last

decades since it seems to be the only clue to a theory of quantum gravity available. Quantum

gravity is the attempt to unify the two theories that revolutionized physics in the beginning

of the last century: Quantum Mechanics and General Relativity. This introduction will

show why it is widely believed that black hole physics holds the clues to a synthesis of those

two theories.

1.1 INSIGHTS FROM CLASSICAL GENERAL RELATIVITY

The clues coming from General Relativity are a series of results that are now known as the

four laws of black hole mechanics (see table 1.1).

Lets begin the discussion of the classical laws of black hole mechanics with the zeroth

law. We will not be too detailed here for we give a new derivation of this fact in chapter 3.

For a more detailed exposition of the laws we refer the reader to the literature [6, 33, 50, 51].

Lets assume that we are dealing with a Killing horizon, i.e. we are given a Killing vector

field ξ in our spacetime and the horizon is ruled by integral curves of this vector field. The

surface gravity κ can then be defined locally to be

κ2 ≡ −(∇a|ξ|)(∇a|ξ|). (1.1)

Note here that ξ has been normalized to unity at infinity to fix the overall rescaling freedom.

It is now a fact that this locally defined quantity is constant over the horizon. This is the

content of the zeroth law of black hole mechanics.

There exist several proofs of the zeroth law. Some of them rely on the existence of a

Killing horizon together with some symmetry assumptions on the spacetime [15, 16, 17, 39].

These proofs do not make use of the field equations. The law can also be proved using

stationarity, the field equations, and the dominant energy condition [6, 23, 25].

1



2 Chapter 1: Introduction

Oth law κ = const.
The surface gravity κ is

constant over the horizon of

the black hole.

1st law
δM =

κ
8πGδA + ΩδJ + ΦδQ

Changes of the parameters of

nearby stationary black hole

spacetimes are not indepen-

dent and are related by the

first law.

2nd law δA ≥ 0 The horizon area never de-

creases.

3rd law

The surface gravity of a black

hole can not be reduced to

zero in a finite number of

steps.

Table 1.1: This table shows the classical laws of black hole mechanics. In this
table A denotes the area of the horizon, Ω is the angular velocity, J the angular
momentum, Φ is the electric potential, and Q the charge of the horizon.
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The first law of black hole mechanics can be given in two versions: The ”physical

process version” and the ”equilibrium state version”. The physical process version relates

the parameters of a black hole in a given spacetime before and after a physical process

bringing about a small change has occurred. The equilibrium state version relates the

parameters of two distinct black hole spacetimes. Both versions lead to

δM =
κ

8πG
δA + ΩδJ + ΦδQ, (1.2)

where A is the surface area of the horizon, Ω is the angular velocity of the horizon, J is

the horizons angular momentum, Φ the electric potential, and Q the horizon charge. The

original proofs can be found in [6] (see also [46, 52, 32]). We will give a new derivation of

this law in chapter 3 in the case of 2+1 dimensional gravity.

The next law is concerned with the horizon area A of a black hole. It states that the

horizon area can never decrease.

δA ≥ 0 (1.3)

The original proof was given by Hawking [22] (See also [50]).

The third law of black hole mechanics has been formulated and proven by Israel [31]. It

states that the surface gravity of a black hole can not be reduced to zero in a finite number

of steps.

Comparison of these laws to the usual laws of thermodynamics reveals a striking re-

semblance. If some multiple of the surface gravity is identified with the temperature, some

multiple of the area with the entropy, and the mass with the energy (see table 1.1) one finds

an exact match.

It was Bekenstein [8] who suggested that this resemblance is more then a mere coinci-

dence. He argued that the laws of black hole mechanics are nothing more then the actual

laws of thermodynamics applied to black holes. He thus said that the entropy of a black

hole is given by some multiple of its area

SBH = γA, (1.4)

for some constant γ with the units of inverse area. By comparison with the usual first law

of thermodynamics this means that the temperature of a black hole would have to be

TBH =
κ

γ8πG
, (1.5)

with the same constant γ as above. The exact value of this constant γ can not be determined

from these purely classical considerations.
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Thermodynamics
Black Hole Mechan-

ics

0th law
T is constant in equilib-

rium

κ is constant over the

horizon

1st law dE = TdS+ work terms dM = κ
8πGdA + . . .

2nd law dS ≥ 0 dA ≥ 0

3rd law
T = 0 can not be at-

tained in a finite num-

ber of steps.

κ = 0 can not be at-

tained in a finite num-

ber of steps.

Table 1.2: The laws of usual thermodynamics and the laws of black hole me-
chanics bear a striking resemblance if one identifies the surface gravity κ with
the temperature T , the area A with the entropy, and the mass M with the en-
ergy E. This comparison does not fix the exact relation between S and A. If
S = γA, for some constant γ with units of inverse area, then T = κ/γ8πG. This
constant can not be fixed by looking at the classical theory alone.
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Bekenstein then went on to propose a generalized second law of thermodynamics which

said that the entropy of black holes which is determined by their areas together with the

entropy of everything else can not decrease,

δSBH + δSeverything else ≥ 0. (1.6)

As it stands this identification has several problems. The first problem is that classically

the temperature of a black hole vanishes. The second problem is that entropy and area

have different dimensions. Entropy is dimensionless whereas area has the dimension length

squared. What is the length scale here that relates the two quantities? Is third problem is

that this generalized second law can be violated. By lowering a box containing entropy to

the horizon and dropping it into the black hole after almost all energy has been extracted

at infinity one can decrease the outside entropy without increasing the area of the black

hole. A last problem is the factor of γ that remains undetermined in the classical theory.

All these problems can be solved if Quantum Mechanics is taken into account.

1.2 QUANTUM THEORETICAL INSIGHTS

The key observation that helps to resolve the problems mentioned above was made by S.

Hawking [24]. He realized that when quantum fields are brought into the picture a black

hole emits particles at the Hawking temperature

THawking =
~κ

2π
(1.7)

(See [33, 51] for a derivation of this result and [20] for an alternative approach). We will

see how the introduction of this temperature gets rid of the problems mentioned above.

The introduction of the Hawking temperature shows that quantum mechanically black

holes do have a temperature. The surface gravity κ that looks like a temperature in the

classical laws of black hole thermodynamics actually is the physical temperature of the black

hole.

Having an expression for the temperature we can now fix the constant γ relating the

area A of the black hole and the entropy. We obtain

SBH =
A

4~G
. (1.8)

The quantity ~G is exactly the Planck length squared1. The entropy of a black hole is thus

just one fourth of the horizon area measured in units of the Planck length squared.
1In units c = 1.
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It can also be shown that the generalized second law of thermodynamics can not be

violated any more if the quantum fields outside the horizon are taken into account. For a

detailed discussion see [48, 49].

Through the inclusion of Quantum Mechanics into the picture we have thus removed

the obstacles that prevented us from identifying the classical laws of black hole mechanics

with the corresponding laws of thermodynamics.

Having identified the area of the black hole with its true thermodynamic entropy we are

now ready to ask the central question that has guided the search for a theory of quantum

gravity for the last decades:

Central question What are the microscopic degrees of freedom that give rise to the black

hole entropy.

This thesis is concerned with a partial answer to this question.

1.3 ANSWERS

The last few years have seen a remarkable progress towards finding answers to the central

question posed above. Answers have been given from two very different approaches to

quantum gravity, namely string theory and loop quantum gravity. Lets review shortly how

both these approaches arrive at a microscopical description of black hole entropy.

1.3.1 Black hole entropy and string theory

In string theory the counting of states that give rise to black hole entropy is done in the

weak coupling limit. In this limit the states are quantum fluctuations around D-branes that

reside in flat space. The immediate question is then: What does such a counting have to

do with the problem of black hole entropy?

To understand this we have to look at the special character of the objects that are being

counted and the fact that we are dealing with a supersymmetric theory.

Let us start with the special nature of the objects that we look at in the weak coupling

limit. They are the so called D-branes. These objects are a rather recent addition to string

theory [37, 38]. With the advent of string dualities it became clear that such an addition was

needed since these dualities interchange Neveau-Schwartz – Neveau-Schwartz and Ramond–

Ramond states and the string perturbation states only carry NS charges. D-branes carry

these Ramond charges and allow for a flat space description in the weak field limit.
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Next we look at the consequences of supersymmetry. A state which is invariant under

some (usually half) of the supersymmetry generators is called a BPS state. The number of

BPS states is essentially a topological invariant, and thus will not change if the coupling

is changed continuously. Using this fact one can perform the counting of states in either

the strong or the weak coupling regime. The black hole states that we are interested in are

strong coupling states but it turns out that the counting is more easily performed for small

values of the coupling constant.

The picture is thus the following. One starts counting BPS states in the weakly coupled

flat regime and then increases the string coupling g. Since Newton’s constant grows like g2

the gravitational field becomes stronger and at some point leads to the formation of a black

hole. The number of BPS states which have the same charges as the black hole is then

identified with the exponential of the entropy of that black hole. The fact that we have to

look at BPS states means that only extremal black holes can be dealt with.

To obtain extremal black holes with non-vanishing surface area one has to start with

BPS states with several non-zero charges. The easiest example is given by a type IIB string

theory on T 5 × R5. Here only three non-zero charges are required to obtain an extremal

black hole with a regular horizon and a non-zero surface area. Type IIB string theory is

chosen here since it possesses fields carrying Ramond charges.

We begin with the weakly coupled string configurations. They are given by Q5 D-5

branes wrapped on T 5, Q1 D-1 branes wrapped around one of the circles of T 5, and −n

units of momentum around one of the S1 making up the T 5. The counting of the number

of states can be done in several ways (see [10, 18, 35, 21]). We just give the answer. It is

exp(2π
√

Q1Q2n). (1.9)

All these string configurations lead to the same black hole in the strong coupling regime.

The classical black hole metric can be written down as follows,

ds2 = −λ−2/3dt2 + λ1/3[dr2 + r2dΩ2
3], (1.10)

with

λ =
(

1 +
r2
1

r2

) (
1 +

r2
5

r2

) (
1 +

r2
n

r2

)
, (1.11)

and the radii are related to Q1, Q5, and n in the following way

r2
1 = (RV )2/3g−1/2Q1V (1.12)

r2
5 = (RV )2/3g1/2Q5 (1.13)

r2
n = (RV )2/3n/R2V. (1.14)
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If T 5 = T 4 × S1, then (2π)4V denotes the volume of T 4, R is the radius of S1, and g is the

string coupling. The Bekenstein-Hawking entropy of this solution is given by

SBH =
A

4G
= exp(2π

√
Q1Q5n), (1.15)

in agrement with the value obtained above.

More details on Black Hole entropy in string theory can be found in a number of review

articles [42, 36, 45].

1.3.2 Black hole entropy from loop quantum gravity

We will only give a rough sketch of the ideas leading to an explanation of the black hole

entropy in loop quantum gravity. A more detailed analysis can be found in [1, 4]. One

of the most striking features of loop quantum gravity is the fact that certain geometrical

operators have a discrete spectrum. An example is the operator corresponding to a two

dimensional surface in space. The Hilbert space of loop quantum gravity is spanned by

spin network states which are graphs whose edges are labelled by representations of SU(2),

i.e. by spins j = 1/2, 1, . . ., and whose edges are labelled by intertwining operators. If such

a spin network punctures a two dimensional surface transversely with an edge of spin j it

contributes an amount of

8πγl2P
√

j(j + 1) (1.16)

to the area of the surface. The parameter γ is a positive real number known as the Immirzi

parameter[28, 29, 30]. It reflects an ambiguity in the choice of conjugate variables that are

used in the quantization. The idea is now to ask for the number of states that endow the

horizon of the black hole with a given area A. The states that are counted are just the

surface states of the theory. The states in the bulk are traced over. A detailed exposition

of the counting can be found in [4]. We here use the result that the main contribution to

the entropy comes from punctures with spin 1/2. The number of states is then 2N , and the

entropy is just

S = N ln 2. (1.17)

The number N of punctures can be computed from equation (1.16). One obtains

S =
ln 2
π
√

3
1
γ

A

4
l2P . (1.18)

If one thus chooses γ to be ln 2/π
√

3, one obtains the Bekenstein - Hawking entropy.
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1.3.3 Symmetry based approaches to black hole entropy

Recently a new approach to the problem of black hole entropy has emerged that does

not rely on a specific theory of quantum gravity. The idea is that the space of states that

classically represent a black hole carries a representation of a symmetry algebra and that the

elements of this algebra act as approximate symmetries in the classical spacetime. Finding

the microscopical entropy then reduces to a problem in the representation theory of that

algebra. This is the approach that we will follow in this work. We give a detailed overview

of this approach in chapter 2.

The remarkable aspect of this approach is the fact that it is so deeply rooted in the

classical theory. This might shed some light on the importance of the problem of black hole

entropy for the search of a quantum theory of gravity. We will discuss this point in chapter

6.

1.4 ORGANIZATION OF THE WORK

The organization of this thesis is as follows. Our aim is it to use the symmetry based

approach to finding the black hole entropy. A detailed description of the method and

the tools used is given in chapter 2. A key ingredient is the notion of symmetry used in

the approach. One motivation for this work was to investigate the natural symmetries of

isolated horizons. We thus introduce isolated horizons in chapter 3. This chapter also

discusses new versions of the zeroth and first law of black hole mechanics. The next chapter

4 then deals with the natural symmetries of an isolated horizon. It is shown that this set

of symmetries does not give an explanation of black hole entropy. We then discuss a new

set of symmetries in chapter 5. These symmetries are distinguished from the previous ones

by the fact that there are only given in a neighborhood of the horizon and do not possess a

limit to the horizon. These symmetries allow us to complete the symmetry based approach

to black hole entropy. In the last chapter 6 we discuss the results obtained. An appendix

gives a comprehensive overview of the Newman - Penrose formalism in 2 + 1 dimensions.

This formalism has been extended here from its original 3 + 1 dimensional form to be used

in our treatment of 2 + 1 dimensional isolated horizons.





Chapter 2

Symmetry Approach to Black Hole Entropy

In this chapter we discuss an approach to black hole entropy that is based on symmetries of

the spacetime. The hope is that the microstates of the black hole furnish a representation

space for some symmetry algebra and that the elements of this algebra can be found as

approximate symmetries of the classical spacetime. The problem of counting the states

then becomes a problem in the representation theory of groups and algebras.

The organization of this chapter is thus as follows. In the first section we give a more

detailed exposition of the strategy that we have just outlined. This strategy will be followed

in the chapters 4 and 5 for two different sets of symmetries. In the following section we

discuss the occurrence of central extensions in the theory of representations of groups and

algebras. This is important for us since the group that we are looking at is the diffeo-

morphism group of the circle which may obtain a central extension when represented in a

Hilbert space. The appearance of a central extension will be crucial for what follows. In

the following section we then concentrate on the Virasoro algebra. Since the dimension of

the representation spaces of this algebra is so crucial we spend the next section describing

a formula that provides us with a convenient way of calculating this dimension.

2.1 THE NAME OF THE GAME

Given a black hole we want to count the possible quantum mechanical microstates repre-

senting it to find its entropy. This task is facilitated if we know that the microstates are

related to each other by the action of some group or algebra. It would then suffice to know

the group and its representation theory to obtain the desired number of states. If rem-

nants of the group action survive in the classical theory as symmetries, only the classical

spacetime needs to be looked at to find the black hole entropy.

The motivation behind this approach goes back to earlier work by Brown, Henneaux [9].

11
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They calculated symmetries of spacetimes that are asymptotically anti de Sitter and found

that the corresponding Hamiltonians give rise to a Virasoro algebra with non-vanishing

central charge. These authors did not apply their result to the problem of black hole

entropy though. The first one to do this was Strominger[44]. He applied the idea to 2+1

dimensions in the context of the BTZ black hole [5] (see also section 3.1). The symmetries,

however, are taken from the previous analysis [9] which is tailored to asymptotic infinity

rather than to the black hole horizon. Therefore, it is not apparent why these symmetries

are relevant for the black hole in the spacetime interior. For example, in asymptotically

flat, 4-dimensional space-times, the symmetry group at (null) infinity is always the Bondi-

Metzner-Sachs group, irrespective of the interior structure of the space-time. Thus, the

results of [44] are equally applicable to a star that has similar asymptotic behavior as that

of the black hole. Subsequently, Carlip improved on this idea significantly by making the

symmetry analysis in the near-horizon region. Conceptually this approach is much more

satisfactory in that the black hole geometry is now at the forefront. However, at the technical

level, Carlip’s work [13] appears to have some important limitations which we will correct

in chapter 5.

Let us review the strategy. The starting point is a phase space consisting of solutions

to Einstein’s equations that is defined through the boundary conditions on the inner and

outer boundary. In the group of diffeomorphisms that preserve the boundary conditions

we then look for a subgroup that is isomorphic to Diff(S1). Given a vector field ξ in this

Diff(S1) we can assign to it the Hamiltonian Hξ that generates the corresponding motion

on phase space. We thus obtain a map from Diff(S1) into the Poisson algebra of our phase

space. As we will see in the following section 2.2 this map might not be a homomorphism

of Lie algebras and we might pick up a central charge. Since our Diff(S1) preserves the

boundary conditions and is in this sense a symmetry it is natural to assume that it is

unitarily implemented in the underlying quantum theory. This allows us to use Cardy’s

formula to calculate the dimension of this unitary representation (see also figure 2.1).

Let us conclude this section with a couple of remarks. First it has to be pointed out

that the motivation for looking for a Diff(S1) comes mainly from the history of the subject.

There is no a priori reason why this group should play such an important role. The best

reason that can be given is a posteriori, namely that it gives the correct result.

It is also worth pointing out that the we look at Diff(S1) as a purely algebraic object.

There is no geometric object isomorphic to a circle whose diffeomorphism group give rise

to the group we are looking at. In 2 + 1 dimensions the horizon of a black hole has the
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Classical phase space

Find Diff(S1), ξn

Represent Diff(S1), ξn → Ln

Discover a Central Charge

[Ln, Lm] = (n−m)Ln+m + c
12δn+m,0(n3 − n)

Use Cardy Formula

S = 2π
√

c l
6

Figure 2.1: This figure gives an overview of the strategy that we will pursue
to find the entropy of a black hole. We begin with a classical phase space
together with boundary conditions on the inner and outer boundary. In the
group of diffeomorphisms that preserve the boundary conditions we then look for
a subgroup that is isomorphic to a Diff(S1). Next we calculate the Hamiltonians
generating these symmetries together with their Poisson brackets. From the
bracket we can read of the central charge c and use the Cardy formula to calculate
the entropy.
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geometry S1 × R and it is tempting to try to relate this S1 appearing here to the Diff(S1)

we are looking at. As we will see in later chapters no such relation exists.

Finally we want to point out that we arrive at a phase space, the starting point of our

investigation, in two different ways. In our first approach we use the phase space of isolated

horizons (see chapter 3). In our second approach we start with a BTZ spacetime (see section

2) and the phase space consists of those spacetimes that possess, in a sense to made precise

later, the same near-horizon geometry as BTZ.

2.2 THE APPEARANCE OF CENTRAL CHARGES

In this section we want to review a couple of facts about the appearance of a central charge

for Lie algebras. As we have mentioned in the introduction to this chapter a central charge

may arise when we try to represent a given Lie algebra g on some linear vector space V .

We are thus looking for a map T : g → Hom V , such that

T ([X, Y ]) = [T (X), T (Y )]. (2.1)

It might now happen that we have found a map T that does not quite satisfy this relation

but comes close in the sense that the elements

Θ(X, Y ) ≡ [T (X), T (Y )]− T ([X, Y ]) (2.2)

form an abelian algebra that commutes with all elements in T (g). We will call the algebra

formed by these elements a. Given this map T one might ask whether it is possible to

redefine the map in such a way that the corresponding Θ vanishes. If such a choice could

be made we would obtain a true representation of our algebra g.

If we replace T (X) by

T (X) + µ(X), (2.3)

for some map µ : g → a, it is easy to see that Θ(X, Y ) changes to

Θ(X, Y ) + µ([X, Y ]). (2.4)

The function Θ(X, Y ) can thus be made to vanish if and and only if it can be written as

µ([X, Y ]) for some function µ. In general this will not be the case.

Before proceeding let us introduce some notation that facilitates the discussion. It is

easy to see that the map Θ satisfies the following properties:
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1. Θ is bilinear

2. Θ is alternating, i.e.

Θ(X, Y ) = −Θ(Y, X) (2.5)

3. It satisfies the Jacoby identity:

Θ(X, [Y, Z]) + Θ(Y, [Z, X]) + Θ(Z, [X, Y ]) = 0 (2.6)

To show the last property one has to use the fact that [ , ] is a Lie bracket for which the

Jacoby identity is valid. We denote by Z2(g, a) the set of all maps satisfying the above

three properties. We want to identify maps in Z2(g, a) if they are related as in equation

(2.4). We thus introduce the space B2(g, a) of maps

b : g× g - a

(X, Y ) - b(X, Y ) = µ([X, Y ])
(2.7)

for some function µ. We can then form the quotient of these two spaces

H2(g, a) ≡ Z2(g, a)/B2(g, a). (2.8)

This space is called the second cohomology group of g with values in a.

So far we have seen that we can construct a true representation from our map T if

and only if the the class [Θ] corresponding to Θ in the second cohomology group H2(g, a)

vanishes. If [Θ] does not vanish we can obtain a representation not of g but of a Lie algebra

closely related to it. Let

h ≡ g⊕ a (2.9)

as vector spaces and let us define the following bracket on it

[ , ]h : h× h - h

(X, A), (Y, B) - ([X, Y ]g, Θ[X, Y ]).
(2.10)

Together with this bracket h becomes a Lie algebra and the following sequence of algebras

is exact

0 - a - h - g - 0, (2.11)

where the second and third map are the natural injection and surjection respectively. The

algebra h is called the central extension of g by a. It can further be shown that two
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such extension are isomorphic if and only if the corresponding maps Θ belong to the same

cohomology class. We thus find that the second cohomology group is isomorphic to the set

of central extensions of the algebra g.

The new Lie algebra h is interesting because it is quite easy to construct a true repre-

sentation for it, given the map T . For (X, A) ∈ h let

T̃ (X, A) ≡ T (X) + A. (2.12)

It is easy to see that this provides us with a representation of the algebra h.

Lets summarize. We started with a map T that was almost a representation of the Lie

algebra g on a vector space V . The failure Θ of this map to be a representation determines

an element in the second cohomology of g with values in an abelian algebra a. Each such

cohomology class gives rise to a central extension h of g by the abelian algebra a. This

central extension h then possesses a natural true representation on V .

Before ending this rather technical section we give a well known example of what we

have just encountered.

Example 1. Let g be the Lie algebra of a semi simple finite dimensional Lie group (such as

SU(2) ) then its second cohomology group with values in R, C or any other finite dimensional

g module vanishes. This was shown by Whitehead (see [27]). For a large class of algebras

this result was established before by V. Bargman [7].

2.3 THE VIRASORO ALGEBRA

In this section we will describe the Lie algebra of the diffeomorphism group of the circle and

its central extension, the Virasoro algebra. The diffeomorphism group of the circle Diff(S1)

is of interest because the conformal group of the plane can be written as the product of two

copies of Diff(S1). The Lie algebra of Diff(S1) can be identified with the set of vector fields

on S

LieDiff(S1) = Vect(S). (2.13)

If we think of S as being imbedded in C as the set of complex numbers with modulus

one we can represent a vector field on S by a series

∑
n∈Z

anzn+1 d

dz
. (2.14)
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A basis of these fields is thus given by the operators

Ln ≡ z1−n d

dz
, n ∈ Z. (2.15)

It then easy to verify that these operators satisfy the following commutation relation

[Ln, Lm] = (n−m)Ln+m, n, m ∈ Z. (2.16)

we will denote this algebra by f. If these operators generate symmetries of our theory we

are guaranteed the existence of hermitian operators T (Ln) representing them in the given

Hilbert space. These operators are uniquely determined up to the addition of a multiple

of the identity operator 1. We are thus in the position discussed in the last section. The

abelian algebra a is here spanned by the identity operator and is thus isomorphic to C. We

are thus led to discussing central extensions of f by C. The set of these extensions is given

by the second cohomology H2(f, C). The central result is now the following theorem.

Theorem 1. The second cohomology H2(f, C) is isomorphic to C.

H2(f, C) w C (2.17)

This second cohomology is generated by the cocycle

θ(Ln, Lm) ≡ δn+m
1
12

n(n2 − 1). (2.18)

A proof of this theorem can be found in [41]. The generic situation is thus that we

encounter a representation of a central extension of f rather then of f itself. For the central

extension corresponding to the cocycle c θ we arrive at the following commutation relation

[Ln, Lm] = (n−m)Ln+m + δn+m
c

12
n(n2 − 1), n, m ∈ Z. (2.19)

This algebra is commonly denoted as the Virasoro Algebra with central charge c.

2.4 COUNTING STATES: THE CARDY FORMULA

Given an irreducible representation of the Virasoro algebra we now would like to know what

the dimensionality of the representation space is. The situation might be compared with

that encountered when looking at SU(2). If we know the highest weight l we know that the

dimension of the representation space is 2l + 1. An equivalent formula for the case of the
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Virasoro algebra was given Cardy [11] (see also [14]). If we look at a representation of the

Virasoro algebra with central charge c and highest wight l, i.e. we have

L0|l〉 = l|l〉, (2.20)

and Ln|l〉 = 0, for n > 0, the dimension d of the representation space is given by

d = exp

(
2π

√
cl

6

)
. (2.21)



Chapter 3

Isolated Horizons

In this chapter we describe the concept of an isolated horizon. This concept has been

introduced to deal with a number of restrictions that exist in the usual treatment of black

holes which is centered around the notion of event horizons in globally stationary spacetimes.

An event horizon H+ in a spacetime M is the boundary of the causal past J−(I+) of

future null infinity I+,

H+ = M ∩ ∂J−(I+). (3.1)

The important point to realize here is that in order to find the event horizon the whole

spacetime has to be known. In most situations this knowledge is not available. If one talks

for example about a black hole in the center of a galaxy it is not the event horizon that

is meant. Also in numerical relativity one usually does not evaluate the entire spacetime

but only patches of it (see [19] for a more detailed discussion of the use of isolated horizons

in numerical relativity). Still one would like to be able to talk about black holes and their

properties. A more local notion of a black hole is thus desirable.

Another problem arises from the requirement of stationarity which implies the existence

of a Killing field in the spacetime. Such a degree of symmetry will usually not be present in

physically interesting situations. In a gravitational collapse e.g. the spacetime will contain

gravitational radiation even if the black hole itself has long settled down. We would thus like

describe situations in which the black hole is in equilibrium while the rest of the universe

might not be (see figures 3 and 3 for more discussion on these points).

In the first part of this chapter we will introduce the notion of an isolated horizon. It

will be immediately clear from the definitions that isolated horizons are able to address

the mentioned above. We then proceed to show that although the framework is rather

general we are able to derive some of the laws of black hole mechanics that served as

our motivation. Since the definition of an isolated horizon is so local we have to find new

definitions for quantities that in the old framework made use of global structures. Examples

19
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2

1

∆

∆ δM

M

Figure 3.1: This figure shows why the concept of event horizons is not able to
deal with some physically interesting situations. Imagine a black hole is formed
through the gravitational collapse of a star M . After the collapse the situation
will settle down and if nothing further would happen the event horizon would
be at a position which we denoted by ∆1. If now a long time after the collapse
a shell of matter falls into the black hole the mass of the hole will increase and
ultimately the event horizon will be outside, at a position ∆2. Thus although
the shell of matter might have been arbitrary far away after the collapse we still
would have had no concept that allowed us to call ∆1 the horizon of a black
hole. Isolated horizons include both ∆1 and ∆2 are thus able to include more
physical situations.
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∆ +

i

i

+

o

Figure 3.2: Black holes are usually discussed within the framework of event
horizons in stationary spacetimes. This framework will not allow the discussion
of a situation as the one depicted in this figure. After a gravitational collapse a
black hole will settle down while the spacetime is still filled with gravitational
radiation and thus will not admit a Killing field. The concept of an isolated
horizon is build to describe the part ∆ of the black hole that is in equilibrium
while the rest of the spacetime may be far from equilibrium.
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are the surface gravity and the mass.

3.1 DEFINITION

In this section we will give the definition of an isolated horizon. It is advantageous to

proceed in several steps since preliminary results have to be established before the final

definition can be given.

Let M be a three dimensional manifold with metric tensor gab of signature (− + +).

We will be considering null hypersurfaces of M, i.e. hypersurfaces whose tangent spaces at

each point contain a null direction. It is easy to see that a null vector field tangent to the

hypersurfaces is automatically a normal to the surface. We will denote a future pointing

null normal vector field to the null hypersurface by l. This null normal l is ambiguous up

to a rescaling by a positive function.

If ∇ is the covariant derivative compatible with gab then we can define the expansion

Θ(l) of l by mamb∇alb, where ma is any spacelike vector field tangent to the hypersurface.

It is easy to see that this definition does not depend on the choice of m.

3.1.1 Non-expanding horizons

After these preliminaries we will now start with the notion of a non-expanding horizon.

Definition 1. Let ∆ ⊂M be a null hypersurface of the spacetime (M, gab) and l a future

pointing null normal vector field on ∆. The hypersurface ∆ is called a non-expanding

horizon iff it satisfies the following conditions:

NE1 ∆ is isomorphic to S1 × I, where I is some interval in R.

NE2 The expansion Θ(l) of l vanishes.

NE3 The equations of motion hold at ∆. Furthermore the stress-energy tensor Tab is such

that −T a
bl

b is future directed and causal for any future directed null normal l.

The paradigm of a non-expanding horizon in three dimensions is best illustrated by the

BTZ black hole[5]. We give here a slightly generalized version of the standard BTZ black

hole:

Example 2. We describe the generalized BTZ black hole in Eddington-Finkelstein-like co-

ordinates. In these coordinates the metric is given by

ds2 = −(N⊥)2dυ2 + 2dυdr + r2
(
dφ + Nφdυ

)2
, (3.2)



3.1. Definition 23

A

∆ non-expanding

horizon

• ∆ ' S1 × R

• Expansion Θ(l) =

0

• Equations of mo-

tion hold.

• Newman-Penrose

ρ, κNP vanish. α,

π coincide.

• ∇alb=̂ωalb. Sur-

face gravity κ =

laωa.

• Intrinsic deriva-

tive Da on ∆.

B

(∆, [l]) weakly isolated hori-

zon

• ∆ non-expanding horizon

• Llωa = 0

• 0th law:

κ =const.

• Natural foliation

of ∆ with π =

const.

C

(∆, [l]) isolated horizon

• ∆ non-expanding horizon

• [Ll,D]v = 0, for every vec-

tor v tangential to the hori-

zon.

• Unique choice of

[l] in interesting

situations.

Figure 3.3: In this table we give a road map to section 3.1 of this article.
Its main purpose is to provide an overview over the structures that are being
introduced and also to show what the consequences are that can be derived
from them. The first structure is given in A and is that of a non-expanding
horizon. The fact that the Newman-Penrose like coefficients ρ and κNP vanish
and that α and π coincide has the consequence that we can define a one-form
ωa by looking at the divergence of the null-normal la. This one-form then can
be used to define the surface gravity κ of the horizon once a null normal la is
chosen. Another consequence is that there exists an intrinsic derivative operator
Da on the horizon. The one-form ωa is now used in part B to define the notion of
a weakly isolated horizon. For a weakly isolated horizon the surface gravity
κ is constant over the horizon and once a class [l] of null-normals is chosen there
exists a natural foliation of the horizon with circles. The intrinsically given
derivative operator Da is used in C to define an isolated horizon. isolated
horizons have the property that in many interesting situations they possess a
unique class [l] of null normals.
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where

N⊥ =
(

f(r) +
J2

4r2

)1/2

and Nφ = − J

2r2
, (3.3)

for some function f(r). The classical BTZ black hole is obtained when the function

f(r) = −M +
r2

l2
(3.4)

is used. The length l here is related to the cosmological constant Λ through

Λ = − 1
l2

. (3.5)

The metric (3.2) is singular when N⊥ vanishes. For the classical BTZ black hole this

happens for r = r±, with

r2
± =

Ml2

2


1±

[
1−

(
J

Ml

)2
]1/2


 . (3.6)

Sometimes it is advantageous to have the mass M and the angular momentum J expressed

in terms of r+ and r−:

M =
r2
+ + r2−

l2
J =

2r+r−
l

(3.7)

The horizon of the BTZ black hole, given by r = r+, will serve as our first example of a

non-expanding horizon in 2+1 dimensions.

To check our conditions for a non-expanding horizon we have to give a null normal to

the horizon. We choose

l = ∂υ −Nφ(r+)∂φ. (3.8)

To calculate the expansion of l we have to choose a spacelike vector to the horizon. Here we

take

m =
1
r+

∂φ. (3.9)

It is then easy to check that the expansion of l indeed vanishes. That the horizon has the

right topology is easy to check and that the equations of motion hold is clear since we are in

a vacuum solution to Einsteins equation.

Before we start discussing consequences of this definition a couple of remarks are in order

that show how these conditions relate to the physical motivation given in the introduction.

The first part of the definition NE1 just reflects the situation that is most commonly

encountered. The horizons in the examples given here have this topology. More general

topologies could be considered but this will be done elsewhere.
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A consequence of condition NE2 is that the horizon area is constant along the horizon.

This is the precise meaning of the idea that the horizon is isolated. We will denote the area

of the horizon by a∆. We also introduce the radius R∆ of the horizon such that a∆ = 2πR∆.

Given a boundary one usually requires that the metric approaches a certain fixed metric.

This is what is usually done at infinity. In NE3 we just impose the condition that the

equations of motion are satisfied at the horizon. This requirement is much weaker then

assuming a particular form of the metric. The energy condition is also very weak. It follows

from the much stronger dominant energy condition.

Although the conditions that we have imposed seem rather weak they have a number of

interesting consequences. To explore these consequences we introduce a Newman-Penrose-

like (NP-like) triad consisting of the vectors la, na, and ma in the neighborhood of the

horizon ∆. The vectors la and na are null and we choose la such that it coincides with

the null normal of the horizon. The vector ma is normalized to unity. We further require

lana = −1. All other contractions are zero. Having such a triad we can introduce NP-

like coefficients as in the higher dimensional case. Appendix A gives the corresponding

definitions and a summary of important relations for these coefficients. In what follows we

further assume that we have chosen our triad such that dn = 0.

The expansion Θ(l) coincides with the NP coefficient ρ. It thus follows that

ρ =̂ 0, (3.10)

where a hat denotes an equation that is valid on the horizon.

Since la is hypersurface orthogonal to the horizon it follows that the NP coefficient κNP

vanishes:

κNP =̂0 (3.11)

From the fact that we have chosen our triad such that dn = 0 it follows that the NP

coefficients α and π coincide:

α=̂π (3.12)

We thus see that as a consequence of our boundary conditions the two NP coefficients ρ and

κNP vanish and the two coefficients α and π coincide. These facts will allow us to introduce

more structure on the horizon ∆. We begin with a one-form ωa on the horizon.

If we now look at the covariant derivative of l along directions in the horizon we obtain

(see equation (A.10) in appendix A)

∇ a←−lb := ωalb, (3.13)



26 Chapter 3: Isolated Horizons

where the one-form ωa is given by

ωa = πma − εna. (3.14)

Given a choice of a null-normal la on the horizon we thus obtain a one-form ωa. If we had

chosen a different null-normal l′ = fl, for some positive function f , we would have obtained

ω′a = ωa + ∂a ln f. (3.15)

We can also look at the acceleration of la. It is given by

la∇alb=̂laωalb = εlb. (3.16)

We introduce a new name for the coefficient of lb appearing in this equation.

Definition 2. Given a non-expanding horizon ∆ with a choice of a null-normal la, following

the standard terminology used in black hole physics, we denote the quantity laωa ≡ ε by κ

and call it the surface gravity of ∆.

Like the one-form ωa the surface gravity κ depends on la. If we change la as above by

a positive function f we obtain

κ′ = la∂af + fκ. (3.17)

Later in this section we will discuss how we deal with the freedom in the choice of la. We

calculate the one-form ωa and the surface gravity κ for the example given above.

Example 3. In example 5 of appendix A we have calculated the NP coefficients for the

BTZ black hole. We can thus read of the one-form ωa:

ωa = Nφma − κna (3.18)

where the surface gravity κ is given by

κ ≡ ε =
r

l2
− r(Nφ)2. (3.19)

Another consequence of the fact that the NP coefficients ρ and κNP vanish is that there

exists a unique derivative operator D on ∆ which is induced by the covariant derivative on

M. Since ∆ is null there is no natural way to decompose ∇av
b into a component tangent

to the horizon and a component perpendicular to the horizon. Generally the definition of a

derivative operator would thus depend on the choice of such a decomposition. In turns out
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that as as consequence of our boundary conditions no such decomposition is necessary. We

have already seen in equation (3.13) that the derivative of the null-normal la restricted to

directions in the horizon is tangential to the horizon provided ρ and κNP vanish. For the

derivative of ma we find (using again appendix A)

∇ a←−mb = (κNP na − ρma)nb + (µma − πna)lb. (3.20)

Again we find that the term involving components that are not tangential to the horizon

vanishes since ρ and κNP are zero. We thus find that our boundary conditions already

ensure that all components of the derivative operator, pulled back to the horizon, lie in

the horizon. The need to decompose the derivative operator thus does not arise and no

ambiguity exists. We can thus set

Dav
b := ∇ a←−vb (3.21)

and obtain an intrinsically defined derivative operator Da on the horizon ∆.

Next we discuss the restrictions on the Ricci tensor that follow from our boundary

conditions. The first restriction can be read off from equation (A.34) in appendix A. We

get

Rabl
alb=̂0. (3.22)

Now we are going to make use of the restrictions on the type of matter that we consider,

i.e. we will make use of the energy condition contained in NE3, which says that

ka = −T a
bl

b (3.23)

is causal, i.e. future pointing, and time-like or null on the horizon.

Using the field equations

Rab − 1
2
gabR + gabΛ = 8πGTab (3.24)

we see upon contraction with lalb and use of the fact that Rabl
alb vanishes that

Tabl
alb = kal

a=̂0. (3.25)

It follows from this that k must be of the form

ka=̂αla + βma. (3.26)
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The only way for this vector to be time-like or null is when β vanishes. The component

T a
bl

b is thus proportional to la. Using this fact it follows from the field equations contracted

with malb that the component Rabm
alb of the Ricci tensor vanishes on the horizon.

Making again use of appendix A we find that Rabm
alb can be expressed as

Rabm
alb=̂Llπ − Lmκ. (3.27)

We thus have

Llπ=̂Lmκ. (3.28)

As a last step we further describe the intrinsic geometry of the horizon. We begin by

noting that as a consequence of our boundary conditions it follows that

dmab = 0. (3.29)

Now using Cartan’s identity we find

Llm = d(l ·m) + l · dm = 0. (3.30)

Since the induced metric on ∆ can be written as qab = mamb we also find

Llqab = 0. (3.31)

On ∆ we now introduce the following equivalence relation. We call two points on ∆ equiva-

lent if they lie on one integral curve of the null-normal la. The space of equivalence classes,

i.e. the space of integral curves of la, will be denoted by P∆. Topologically P∆ is a circle.

The canonical projection map from ∆ onto P∆ will be called p. The fact that Llqab = 0

means that P∆ can naturally be endowed with a metric q̂ab. Since P∆ is a circle there

exists a unique one-form m̂a such that

q̂ab = m̂am̂b. (3.32)

Using the projection p we can lift this one-form to the whole of ∆. It turns out that this

one-form coincides with m. We thus have

m = p?m̂ (3.33)

We thus see that a non-expanding horizon is endowed with a canonical one-form ma.
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3.1.2 Weakly isolated horizons

We have seen that our boundary conditions gave rise to a rather rich structure on the

horizon. We found that we are given an intrinsic derivative operator D and a one-form ωa.

We will now use these structures to refine our definition. Our guiding principles will be that

we want these additional structures to be time independent. We have already seen that the

metric on ∆ is time independent in the sense that Llqab vanishes. We will impose similar

conditions on ω and D and in thus doing will arrive at our final definition of an isolated

horizon. We have not started with this stronger definition precisely because we needed to

introduce the additional structures first in order to formulate our conditions.

The next condition that we impose involves the one-form ωa. As we have seen above

the one-form ωa depends on the choice of null-normal la. Thus if we want to formulate a

condition using ωa it is not enough just to talk about the surface ∆ but we will have to

include the chosen null-normal la.

Equation (3.15) shows that ωa does not change if we rescale la by a constant. We now

denote by [l] the equivalence class of null-normals which differ from l only by a multiplicative

constant. Given such an equivalence class [l] we have a unique one-form ωa which we can

use to formulate further conditions. This situation should be compared with the situation

encountered on Killing horizons. The Killing vector field on such horizons is also given only

up to a multiplicative constant.

Definition 3. Let (∆, [l]) be a non-expanding horizon ∆ together with an equivalence class

[l] of null-normals. We call (∆, [l]) a weakly isolated horizon if and only if

Llωa = 0, (3.34)

where ωa is the one-form given by the equivalence class [l].

The most important consequence of this condition is the fact that the surface gravity

κ = l · ω is constant over the horizon. We have

0 = Llω = dl · ω + l · dω. (3.35)

Using the boundary conditions we have

dω = (Llπ − Lmκ)m ∧ n. (3.36)

In equation (3.28) we have seen that the term in brackets in the above equation vanishes

and dω is thus zero. This means that dl · ω is zero or in other words

κ = const. (3.37)
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This is the zeroth law of black hole thermodynamics which states that the surface gravity

is constant over the horizon. Weakly isolated horizons thus have constant surface gravity.

Weakly isolated horizons with κ 6= 0 posses additional structure. The equivalence class

of null-normals allows for the construction of preferred foliation of the horizon by circles.

We already know that a non-expanding horizon has a canonical one-form ma given on it.

Since dm is zero it generates a class in H1(∆), the first cohomology of ∆. Given that ∆ is

isomorphic to S1 × R we know that

H1(∆) = H0(S1) = R. (3.38)

Integrating ma over a cross section gives the circumference of the horizon and ma is thus

not in the zero class of H1(∆). The closed one-form ωa must thus be of the form

ωa = Cma + ∂aψ, (3.39)

for some constant C ∈ R and some function ψ. This function ψ can now be used to define

a preferred foliation of the horizon. We first notice that

laωa = κ = l(ψ). (3.40)

If we thus assume that we are in the case of non-vanishing surface gravity κ we see that the

surfaces of constant ψ are circles and thus define a foliation of ∆. We will adjust our NP -

triad in such a way that ma is tangential to these circles.

Comparing equation (3.14) with equation (3.39) we see that

π=̂const. (3.41)

We thus obtain a foliation in which the NP - coefficient π is constant on the horizon.

Example 4. For the BTZ - black hole we have found an expression for ωa in equation

(3.18) of example 3. Since Nφ is constant we see that

∂aψ = −κna. (3.42)

We have chosen na to be −dυ where υ is one of the coordinates of the BTZ metric. The

function ψ is thus just the rescaled coordinate υ.
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3.1.3 Isolated horizons

We now give the definition of an isolated horizon. To this end we will require that the

intrinsically defined derivative operator D is also time independent.

Definition 4. A weakly isolated horizon (∆, [l]) is called an isolated horizon if and only

if

[Ll,D]v = 0, (3.43)

for all vector fields v tangential to the horizon.

The nature of this condition is somewhat different from the ones encountered so far.

While it is possible for every non-expanding horizon to choose [l] such that it becomes a

weakly isolated horizon this is not true for isolated horizons. For the rest of the paper we

will not assume that we are dealing with isolated horizons though. We will only require the

horizons to be weakly isolated.

3.2 ACTION PRINCIPLE.

The action for the 2+1 dimensional GR can be defined as follows.

S =
1

8πG

∫
M

(
eI ∧ FI − Λ

6
εIJKeI ∧ eJ ∧ eK

)
− (3.44)

− 1
16πG

∫ tf

ti

dt
∫

S∞
eI ∧AI + C∆∆t− C∞∆t.

Here, eI is an orthonormal triad , AI is a connection and FI is its curvature. C∆ is a function

of the parameters of the horizon (like area, charge, angular momentum), which are constants

for any given history. Adding a constant term has no influence for the lagrangian formulation

of the theory. In the hamiltonian formulation, however, it does make a difference, and

therefore we shall keep track of this term in what follows. Similarly, C∞ is such that it does

not vary between histories, but in order to obtain a differentiable Hamiltonian it should

be kept non-zero, in general. Integral over S∞ should be understood as a suitable limit of

integrals evaluated at finite distances r. In order to define the coordinate r we demand that

there exist coordinates (t, r, φ) on M such that our variables approach those of the BTZ

metric for large values of r.

In order to fully specify our phase-space we need to add boundary conditions. The pair

(A, e) is subject to the isolated horizon conditions on the surface ∆. We also impose fall-off
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conditions at spatial infinity. We require that the field approach their BTZ values. Details

can be found in [2]. One can show that the action is differentiable with those conditions.

Indeed,

δS = bulk terms +
1

8πG

∫
∆

eI ∧ δAI . (3.45)

Due to the above conditions, the boundary term at spatial infinity goes to zero like 1/r.

Also, using the form of the connection A derived in Appendix C.4., one can show that on

the horizon

δAI
a=̂δ[(−κmI + πlI)na + (−µlI + πmI)ma]. (3.46)

Therefore

δS = bulk terms− 1
8πG

∫
∆

eI ∧ (δκ)mIn, (3.47)

where we used the fact that variations of l, n and m are proportional to themselves on ∆.

Let us call a cross-section of the surface of constant time with the horizon by S∆. Using

n = −dv, we obtain

δS = bulk terms− 1
8πG

∫
dv

∫
S∆

(δκ)m. (3.48)

Since κ is constant on ∆ and is kept fixed at initial and final times, we have δκ = 0. The

action is thus differentiable at the horizon.

3.3 LEGENDRE TRANSFORM, PHASE SPACE AND ANGULAR MOMEN-

TUM.

In this section we perform the transformation to a Hamiltonian framework. This will allow

us to introduce a mass for the horizon and ultimately to formulate the first law of black

hole mechanics.

3.3.1 The Legendre transform.

In order to introduce the first law, we will pass to the Hamiltonian framework. First, we

need to perform the Legendre transform. Let us use the convention 8πG = 1. We arrive at
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the following form of the action

S =
∫ tf

ti

dt

∫
Σ
[−eI ∧ LtAI + eI ∧D(t ·AI) +

+(t ·3eI)(FI − 1
2
ΛεIJKeJ ∧ eK)− (3.49)

−1
2

∫ tf

ti

dt

∫
S∞

(
(t ·3eI)AI − (t ·3AI)eI

)
+

+
∫ tf

ti

dt(C∆ − C∞)

where N is the lapse function. In this chapter we shall use the convention in which the

superscript 3 in front of a symbol refers to space-time quantities and the symbols without

a superscript in front are pull-backs to the two-dimensional space-like slice.

From the above we obtain the Hamiltonian

H =
∫

Σ

[
−(t ·3eI)FI − (t ·3AI)DeI +

Λ
2

εIJK(t ·3eI)eJ ∧ eK

]
− C∆ + C∞ +

+
∫

S∆

(t ·3AI)eI +
1
2

∫
S∞

[(t ·3eI)AI + (t ·3AI)eI ] (3.50)

A variation of C∆ is now not zero in general. In fact this term is needed if we want the

Hamiltonian framework to make sense. We will show in the next paragraphs that the

requirement of differentiability of the Hamiltonian restricts the form of this term. It can be

then shown that the horizon terms are exactly analogous to the terms at infinity.

3.3.2 The phase space.

In what follows we will work in the canonical framework. Therefore it is useful to state

here definition of the phase space of isolated horizons. Our variables will be fields on 2-

dimensional manifold Σ such that M = Σ × R. Topologically, the boundary of Σ consists

of two circles, spatial infinity S∞ and a cross section of the horizon S∆. The pairs of

canonically conjugate variables are one forms (AI ,−eI). In the space-time language, they

are all just pull-backs of the respective 3-dimensional quantities to Σ. Our phase space

consists of only those fields which satisfy the isolated horizon conditions on S∆ and the

asymptotic fall-off conditions in the neighborhood of S∞.

Additionally, in order to have an unambiguous notion of angular momentum, we will

impose further restrictions. Namely, we choose to work with so called axi-symmetric hori-

zons. These are defined as the points in our phase space which posses a symmetry vector
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field on the horizon ϕ. We choose to fix one such vector field for all of our phase space and

a different choice of ϕ leads to a different choice of phase space. This vector field is required

to have the following properties: 1) ϕ is tangent to S∆, 2) the affine length of its orbits is

equal to 2π, and 3) it Lie-drags the intrinsic metric qab on the horizon.

The task of defining our phase space will be completed once we give the symplectic

structure. Its form is given by

Ω(δ1, δ2) =
∫

Σ

(
δ1A

I ∧ δ2eI − δ2A
I ∧ δ1eI

)
+ Ω̃(δ1, δ2), (3.51)

where the extra term Ω̃ is given by a suitable integral over S∆. The reason for the boundary

term is that the volume integral is not conserved, i.e. it depends on the spatial slice Σ.

This can be seen in the following way. Using equations of motion, one can check that for

the spacetime quantities

D(δ1A
I ∧ δ2eI − δ2A

I ∧ δ1eI) = 0. (3.52)

Consider now a region of space-time M̃ , boundary of which consists of spatial slices Σ1, Σ2,

the part of the horizon between the slices ∆̃ and spatial infinity. Because of (3.52) and the

fall-off conditions at spatial infinity, the difference between the volume terms on the slices

Σ2 and Σ1 (as defined above) is given by the integral at the horizon:∫
∆̃

[
δ1A

I ∧ δ2eI − (1 ↔ 2)
]

==
∫

∆̃
[δ1ω ∧ δ2m− (1 ↔ 2)] . (3.53)

We know however that there exists a function ψ on the horizon such that

l · dψ =̂ l · ω. (3.54)

Therefore, the above expression can also be written as a difference of two integrals over the

circles S1 = ∆̃ ∩ Σ1 and S2 = ∆̃ ∩ Σ2∫
S2

−
∫

S1

[δ1ψδ2m− (1 ↔ 2)] . (3.55)

Thus the symplectic form is conserved and we have

Ω̃(δ1, δ2) =
∫

S∆

(δ1ψδ2m− δ2ψδ1m) . (3.56)

Moreover, we can fix the freedom in the choice of the function ψ in such a way that this

boundary term vanishes on the initial slice Σ1.
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3.3.3 Angular momentum.

Since our horizon has a symmetry ϕ we are able to find a conserved quantity associated

with it. We will call it angular momentum of the horizon J∆. More precisely, consider any

extension ϕ̃ of ϕ outside of the horizon which is an asymptotic rotational Killing vector

field at spatial infinity. One can check that, on shell,

Ω(δ, Xϕ̃) = δJ∞ − δJ∆, (3.57)

where Xϕ̃ is the vector field on the phase-space generated by ϕ̃ and J∞, J∆ are given by

integrals at spatial infinity and at the horizon, respectively. Thus J∆ is the horizon term in

the current generated by ϕ̃.

The above equation provides us with a formula for angular momentum of the horizon

(up to an additive constant) in terms of basic variables and ϕ:

J∆ = −
∫

S∆

(ϕ · ω)m (3.58)

The additive constant in this formula was fixed by the requirement that J∆ vanishes in the

non-rotating BTZ solution.

3.4 THE FIRST LAW.

In order to formulate the first law of mechanics for isolated horisons we need to define an

energy. Therefore we need to introduce the time evolution vector field t. Motivated by the

stationary space-time examples, we consider only the following choices

t=̂c(t)l − Ω(t)ϕ, (3.59)

where c(t) and Ω(t) are constants on Σ, but they are not constant on the phase space. c(t)

and Ω(t) may depend on parameters of the horizon like area a∆, angular momentum J∆

and charge Q∆. Following terminology used in [3] we call t a live vector field.

The vector field t defines a vector field on the phase space δt generating this time

evolution. It is given by δt(eI , AJ) ≡ (Lte
I ,LtAJ). In the Hamiltonian framework it is

natural to ask whether this evolution is Hamiltonian. In other words, is there a function

on the phase space Ht such that

δHt = Ω (δ, δt)? (3.60)
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The answer is yes, if and only if, the one form Xt defined by

Xt(δ) = Ω (δ, δt) (3.61)

is closed.

We can evaluate the right-hand side of the above equation using the equations of motion.

The resulting expression involves only integrals at the boundary of the spacetime M. On

shell the bulk terms vanish.

Xt(δ) = (terms at infinity)− κ(t)δa∆ − Ω(t)δJ∆ (3.62)

where κ(t) is the surface gravity associated with c(t)l. To derive this equation we used that

δl ∼ l and δn ∼ n. The evolution is thus Hamiltonian if and only if there exists a function

Et
∆ on phase space such that

δEt
∆ = κ(t)δa∆ + Ω(t)δJ∆. (3.63)

We thus conclude that the time evolution is Hamiltonian if and only if the first law of

mechanics holds. Let us call t’s for which the first law holds admissible vector fields. The

next section is devoted to the study of these fields.

3.4.1 Admissible t’s.

If a function Et
∆ satisfying the first law exists, it must be a function of only the horizon

parameters (a∆, J∆). This is also true for κ(t) and Ω(t). In order to construct admissible

vector fields t we choose a function κ0 on phase space only depends on a∆, J∆. Let us then

ask that κ0 = κ(t). This determines c(t) in (3.59) by c(t) = κ(t)/κ. Here κ is determined by

l in the standard way. We then turn to Ω(t) in (3.59). It follows from the first law that

∂κ(t)

∂J∆
=

∂Ω(t)

∂a∆
. (3.64)

Integrating this condition gives

Ω(t) =
∫ a

∞

∂κ(t)

∂J∆
da∆ + F(J∆), (3.65)

where F is an arbitrary function of J∆. We can fix this function by imposing the condition

lim
J∆=const.

a∆→∞
Ω(t) = 0 (3.66)
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By picking a function κ0 of the horizon parameters that satisfies the condition mentioned

above we thus arrive at a unique admissible vector field t. Since there is an infinite number

of such functions we also have an infinite number of admissible vector fields t.

Once we have the functional form of κ(t) and Ω(t) we can integrate the first law to

derive a formula for the energy Et
∆. This will determine the energy only up to an additive

constant. This can be fixed by imposing the physical condition

lim
J∆,Q∆=0

a∆→0

Et
∆ = 0. (3.67)

In the next section we demonstrate this procedure by choosing κ0 to coincide with the

corresponding function for the BTZ metric.

3.4.2 Energy of an isolated horizon.

As an illustration, we will use the above considerations to find Et
∆ for a general isolated

horizon with Tab=̂0 . We choose the constant c(t) to be unity and the surface gravity to be

that of the BTZ black hole. Let

κ(t) = −Λa∆

2π
− 2πJ2

∆

a3
∆

. (3.68)

This implies that

Ω(t) =
2πJ∆

a2
∆

+ f(J∆), (3.69)

where f is any function which depends only on J∆ and the cosmological constant. However,

from physical considerations, we expect that

lim
J∆=const.

a∆→∞
Ω(t) = 0. (3.70)

This fixes the function f to be zero. Therefore the first law results in

δEt
∆

δa∆
= −Λa∆

2π − 2πJ2
∆

a3
∆

, (3.71)

δEt
∆

δJ∆
= 2πJ∆

a2
∆

. (3.72)

These can be integrated to give

Et
∆ = − 1

4π
Λa2

∆ +
πJ2

∆

a2
∆

+ const. (3.73)
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Since we expect that for a non-rotating isolated horizon lima∆→0 Et
∆ = 0, the constant

should be chosen to be zero. The resulting expression is a general formula for the energy of

an isolated horizon in terms of its intrinsic parameters.

After this digression into black hole mechanics we return in the following chapters to

the topic of black hole entropy. We start by outlining the general procedure that we intend

to follow.



Chapter 4

Symmetries of Isolated Horizons

Given an isolated horizon it is natural to ask what we obtain if we apply the strategy outlined

in chapter 2. The first step is to find the classical symmetries. Since an isolated horizon

comes equipped with a number of structures there are natural candidates for symmetries

of these horizons.

4.1 THE VECTOR FIELDS

We will say that a vector field ξ generates a symmetry of the horizon if the flow generated

by ξ on the phase-space preserves the basic structure of the horizon, namely the equivalence

class [l] of null normals and the intrinsic metric q, i.e. qab ≡ gab←−. We thus demand

Lξl ∈ [l], (4.1)

Lξqab = 0. (4.2)

It is not difficult to check that any vector field ξ satisfying the above conditions can be

written as

ξa = Ala + Bma, (4.3)

where the functions A and B are restricted to be of the form

A = C(v−) + const. · v (4.4)

B = const. (4.5)

The coordinates v and v− are defined by the relations n = −dv, m = 1
r+

∂
∂φ , and v± =

v ∓ φ/Ω. It is easy to see that the algebra of these vector fields (4.3) closes. These vector

fields ξ are the symmetries of an isolated horizon.

39
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4.2 HAMILTONIAN AND POISSON BRACKET ALGEBRA

Having found the symmetries of an isolated horizon we now want to find a representation of

them. To this end we use the Hamiltonian theory of isolated horizons developed in chapter

3. Using these results we can construct the Hamiltonians corresponding to the symmetries

together with their Poisson brackets.

As we have seen in chapter 3 there is a natural phase space together with a symplectic

structure for isolated horizons. This symplectic structure on-shell is given by

Ω(δξ, δ) = − 1
π

∮
S∆

[
(ξ ·AI)δeI + (ξ · eI)δAI

]
+ Ω̃(δξ, δ), (4.6)

where Ω̃ is a gauge term which is not important for the present analysis. A and e are

the connection one-form and the orthonormal triad, respectively. Using this expression we

can find the Hamiltonian corresponding to the ξ’s as well as the Poisson bracket of two

Hamiltonians. The obtain

Hξ = − 1
π

∮
S∆

(ξ ·AI)eI + C∆, (4.7)

{Hξ1 , Hξ2} = − 1
π

∮
S∆

[
(ξ1 ·AI)Lξ2e

I + (ξ1 · eI)Lξ2AI

]
, (4.8)

where C∆ is zero except when ξ contains a constant multiple of l. Then we have C∆[cl] =

c(M + 2r+κ + JΩ).

Subsequently, one can check that for any such symmetry vector fields

{Hξ1 , Hξ2} =̂ H[ξ1,ξ2], (4.9)

and therefore there is no central extension of the corresponding algebra of conserved charges.

This result is not quite unexpected since our analysis is entirely classical and a cen-

tral charge often arises from the violation of classical symmetries in the quantized theory.

Nonetheless, it shows that, in general, for symmetries represented by smooth vector fields

on the horizon, the ideas of [44, 13] do not go through. If one wishes to use smooth fields

—as is most natural at least in the classical theory— the central charge can arise only from

quantization and the analysis would be sensitive to the details of the quantum theory, such

as the regularization scheme used, etc. If the original intent of the ideas of [44, 13] is to be

preserved, one must consider symmetries represented by vector fields which do not admit

smooth limits to the horizon; in a consistent treatment, the use of “stretched horizons” [13]
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is not optional but a necessity. Perhaps this is the price one has to pay to transform an

essentially quantum analysis in the language of classical Hamiltonian theory.

Finally, note that any reasonable local definition of a horizon would lead to the above

conclusions since we have made very weak assumptions in this sub-section.





Chapter 5

A New Set of Symmetries

In the last chapter we found that the natural set of symmetries of an isolated horizon

does not lead to a central charge. This chapter will introduce a new set of symmetries.

They will be rather different from the ones encountered before. As we will see below the

corresponding vector fields will not even allow for a smooth limit to the horizon. This is not

to surprising since other symmetries have been covered in the last chapter and we found no

central charge.

In this chapter we will not be as general as in the last two chapters. Thus far we have

dealt entirely with the general notion of an isolated horizon. From now on we will be more

concrete and deal with the near horizon geometry of the BTZ black hole. This is because

we need specific properties of the BTZ black hole, such as the existence of a Killing vector,

that are not available in general. For what follows it is useful to recall the definition of

the BTZ black hole given in section 2 and the results about Newman-Penrose coefficients

gathered in appendix A.

As pointed out in chapter 2 a strategy like ours has been followed in [13]. Since that

analysis was flawed with technical problems we will point to these problems as we go along.

5.1 THE VECTOR FIELDS

The line-element of the BTZ black hole in the Eddington-Finkelstein like coordinates is

given by

ds2 = −N2dv2 + 2dvdr + r2(dφ + Nφdv)2 , N2 = −M +
r2

`2
+

J2

4r2
, Nφ = − J

2r2
. (5.1)

For this metric (5.1) a convenient choice of the Newman-Penrose basis vector fields is

l = ∂v +
1
2
N2∂r −Nφ∂φ , n = −∂r , m =

1
r
∂φ . (5.2)

43
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The BTZ space-time admits a global Killing vector

χ = ∂v − Ω∂φ , Ω = Nφ(r+) . (5.3)

As in [13] we now define another vector field ρa which is given by

∇aχ
2 = −2κρa , ρ =

r

r+

(
∂v + N2∂r −Nφ∂φ

)
. (5.4)

It follows that χ · ρ = 0 and Lχρa = 0 everywhere. For convenience we express both vector

fields χ, ρ in the Newman-Penrose basis up to order (r − r+)2 terms

χa = la +(r−r+)(κna +2Ωma)+O(r−r+)2 , ρa =
r

r+
la− (r−r+)κna +O(r−r+)2 . (5.5)

Clearly, at the horizon χ =̂ ρ =̂ l. Two other useful identities are ∇aρb = ∇bρa and

χa∇aχb = κρb which follow from the definition (5.4) of ρ and the fact that χ is a Killing

vector.

The classical phase-space can be taken to be the space of solutions of Einstein’s equations

of the form

gBTZ
ab + δgab, (5.6)

where gBTZ
ab is the BTZ metric discussed above. To ensure that the near-horizon geometry of

the metrics thus obtained remains close to that of the BTZ metric we will impose boundary

conditions at the inner horizon. The Killing vector field χa becomes the null normal of the

horizon. We want this to be true for all spacetimes in our phase space and we thus impose

χaχbδgab = O(r − r+)2 , χambδgab =̂ 0, (5.7)

where ma is any space-like vector tangent to the inner boundary. The hat over the equality

sign here means that the above equation holds on the horizon.

Clearly the vector field ξ which preserves these boundary conditions (5.7) under diffeo-

morphisms has to be tangent to the horizon. Keeping the same notation as in [13] let us

take the vector field to be

ξa = Tχa + Rρa (5.8)

where, to begin with, R and T are arbitrary functions. By demanding that (5.8) preserves

(5.7) under diffeomorphisms one puts restrictions on R and T . These are derived in [13]

(cf. eq (4.8))

R =
1
κ

χ2

ρ2
DT , D ≡ χa∇a . (5.9)
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The vector field, satisfying (5.9), can then be said to generate symmetries in the precise

sense of (5.7).

Before proceeding we want to emphasize a point that we made earlier in chapter 2. The

vector fields ξ lie by construction in the plane spanned by the vectors χa and ρa. If these

vector fields form a Diff(S1) it is a purely algebraic statement. There is no geometric object

isomorphic to S1 whose diffeomorphism group is responsible for our Diff(S1).

Let us now check the closure of the Lie-algebra of these vector fields. It is at this point

that the analysis of [13] appears to be flawed. The errors arise at three levels:

• As noted in [13] the requirement that the Lie bracket of symmetry vector fields should

close imposes a new condition

LρT =̂ 0. (5.10)

In [13] this condition was imposed at the horizon. However, at the horizon ρa =̂ χa =̂ la

and hence, (5.10) reads DT =̂ 0. Then the main steps in the calculations of [13] fail

to go through. In particular, the central charge is expressed in terms of DT at the

horizon and therefore vanishes identically. This in turn implies that the entropy also

vanishes identically. While the restriction on DT has been noted explicitly in [13], its

(obvious) consequences on the value of the central change and entropy are overlooked.

• Furthermore, it is not sufficient to impose (5.10) only at the horizon; closure will fail

unless it holds in a neighborhood.

• Later, for explicit calculations, a specific function T is chosen in [13] (cf. eq. (5.6)) .

Unfortunately, this function does not satisfy the condition (5.10) which is required in

the earlier part of the analysis in [13].

In other words, although the boundary conditions (5.7) and (5.10) are reasonable, the

technical implementation of them, as presented in [13], is incorrect. We will now propose

an implementation of the boundary conditions that does not suffer from these problems.

Let us now consider symmetry vector fields defined in a neighborhood of the horizon.

Thus, we will now use the stronger set of conditions (5.7) which requires that the closure

condition (5.10) be satisfied everywhere 1. This guarantees that the Lie-algebra of the vector

fields (5.8) closes
1Strictly speaking, we only consider a neighborhood of the horizon where the vector field χ is Killing. In

the BTZ example, however, it is globally Killing
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[ξT1 , ξT2 ] = LξT1
ξT2 = ξT1DT2−T2DT1 , ξT = Rρ + Tχ (5.11)

where R is determined in terms of T as in (5.9). One is to make use of the facts that

Lχρ = LρT = LρR = 0. The condition (5.10), however, restricts the choice of the vector

fields everywhere. To solve for the vector fields we consider a ‘stretched’-horizon at r = r++ε

as the inner boundary. Consider solutions that are of the form

Tn ∼ fn(r) exp(inΩv+) . (5.12)

This choice is interesting because these solutions furnish a Diff(S1), provided fnfm ∼
fn+m. However, the condition (5.10) has to be imposed carefully because of the (r − r+)

terms in the vector field ρ (5.4)

ρa∇aT ∼
(
∂v+ + N2∂r

)
T = 0 . (5.13)

Clearly, the radial derivative of T blows up at the horizon. With the ansatz (5.12) there

is a unique solution for Tn in the neighborhood of the horizon

T ε
n =

1
2Ω

exp
(
− in

Ω
κ

log(r − r+) + inΩv+

)
. (5.14)

Note that the T ε
n are functions of all three coordinates v, r, and φ.

The normalization of T is so chosen that the vector fields ξ form a Diff(S1) algebra

[ξε
Tn

, ξε
Tm

] = i(n−m)ξε
Tm+n

(5.15)

in the neighborhood of the horizon.

Notice that because of (5.14) the vector fields ξ do not have a well defined limit at the

horizon. They are defined only at the stretched horizon and oscillate wildly in the limit

r → r+. Also the radial derivative of ξ blows up, as expected from the condition (5.10). So

one has to take great care in evaluating the Poisson bracket and Hamiltonians – now one

cannot ignore terms which are of order O(r−r+) especially in presence of radial derivatives

in the Poisson brackets. Actually more terms will contribute to the Poisson bracket and a

thorough examination of the entire calculation is needed.
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5.2 HAMILTONIAN AND POISSON BRACKET ALGEBRA

The existence of the Hamiltonian under the boundary conditions (5.7) is shown in [13]. The

surface Hamiltonian is

Hε
ξn

=
1
2π

∮
Sε

∆

εabc∇bξεc
n . (5.16)

The Sε
∆ is a circle with a radius of r++ε. We thus perform our calculations on a stretched

horizon and later take a limit to the horizon. The phase space, described in the previous

section is associated with a conserved symplectic current [32]. The corresponding symplectic

structure may be used to evaluate the Poisson brackets between any two functions on phase-

space. On shell, the symplectic structure can be written as the sum of boundary terms only.

However, one may choose appropriate fall-off conditions of the fields at asymptotic infinity

such that the contribution from the outer boundary vanishes. In the present example the

fields ‘strongly’ approach the asymptotic AdS-values. In that case given two Hamiltonian

vector fields ξ1 and ξ2, the Poisson bracket between the two corresponding Hamiltonian

functionals is given solely by the terms at the inner-boundary [32]

{Hξ1 , Hξ2} =
∮

S∆

(
ξ2 ·Θ[g,Lξ1g]− ξ1 ·Θ[g,Lξ2g]− ξ2 · (ξ1 · L)

)
(5.17)

where 2πΘa[g, δg] = εab[gbc∇c(gdeδg
de) − ∇cδg

bc] is the one-form symplectic potential

and L is the three-form Lagrangian density. Making use of Einstein’s equations Rab = 2Λgab

we can express the Poisson bracket explicitly in terms of the vector fields

{Hε
ξ1 , H

ε
ξ2} =

1
2π

∮
Sε

∆

εabc

[
ξεb
2 ∇d(∇dξεc

1 −∇cξεd
1 ) + 8Λξεb

2 ξεc
1 − (1 ↔ 2)

]
. (5.18)

Our purpose is to find the terms proportional to n3 in the Poisson bracket (5.18) which

give rise to a non-trivial central extension to the Poisson bracket algebra. The Hamiltonian

(5.16) contains terms only linear in n. The central charge can then be read off from the n3

terms with appropriate normalizations. After a long calculation we arrive at the following

expression

lim
ε→0

[
{Hε

ξn
, Hε

ξm
}
]

= 4in3δm+n
a∆Ω
2πκ

+ terms linear in n . (5.19)

As mentioned above the calculation was performed close to the horizon but not directly

on the horizon. Only after we have performed the calculation did we take the limit to the
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horizon. This procedure is essential for the result since it is the radial derivatives appearing

in (5.18) that give rise to the non-vanishing n3 term. Notice that although the vector fields

(5.14) do not have a smooth limit as r → r+ the Hamiltonian and the Poisson bracket have

well defined limits.

5.2.1 Entropy arguments

According to the standard normalization (up to linear order terms in n)

lim
ε→0

[
{Hε

ξn
, Hε

ξm
} − i(n−m)Hε

ξn+m

]
= i

c

12
n3δn+m (5.20)

the central charge can be read off from the n3-term in the Poisson bracket (5.18)

c = 24
a∆Ω
πκ

. (5.21)

In order for us to be able to use the Cardy formula we need to calculate the value of

the Hamiltonian corresponding to the zero mode ξ0. Since the vector fields ξn are periodic

in the variable φ the integration in (5.16) picks out only the zero mode. We thus obtain

lim
ε→0

[
Hε

ξn

]
=

a∆κ

2πΩ
δn,0 . (5.22)

Here we see again that the order in which we performed the calculation is important.

Had we taken the limit to the horizon, i.e. ε → 0, before calculating the poisson bracket we

would not have picked up the central charge. Now, using Cardy’s formula [11], the entropy

is

S = 2π

√
cHξ0

6
= 2

√
2a∆, (5.23)

which agrees with the Bekenstein-Hawking entropy (in units 8G = ~ = 1) up to a factor

of
√

2.

It is worth noting here that Carlip’s central extension (see formula 5.10 of [13]) and

the zero-th mode Hamiltonian have the same numerical factor as ours. Nevertheless, he

argues that one should use a different, so called effective central extension, and obtains

the right numerical factor for the entropy. In our case this strategy fails since we have an

extra factor of Ω/κ or its inverse in front of our expressions. It should be stressed, however,

that this factor is rigidly fixed by the requirements that the symmetry algebra closes, that

it gives a Diff(S1), and that the symmetry vector fields are periodic in the coordinate φ
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with the period 2π. Moreover, following the arguments of [34, 12], since within a classical

framework it is impossible to determine the value of the Hamiltonian in the ground state of

the corresponding quantum theory, the right value of the central charge that is to be used

in the Cardy formula is not determined classically.

The discrepancy between our result and the Bekenstein-Hawking entropy might thus

point to a limitation in our purely classical approach. A quantum mechanical calculation

of Hξ0 could give rise to the right coefficient. We thus advocate the position that the factor

appearing in front of the area should not be taken too seriously; whether it is one fourth or

not. We will have more to say on this in the following chapter 6.





Chapter 6

Discussion

The entropy calculation of [44] faces certain conceptual limitations because the asymptotic

symmetries may be completely different from the horizon symmetries. Both central charge

(5.21) and Hamiltonian (5.16) are quite different from the ones found in [9] for asymptotic

infinity. Thus, one needs an analysis restricted to the neighborhood of the horizon. In [13],

Carlip recognized this limitation and carried out a Hamiltonian analysis using symmetries

defined near the horizon. However, as we saw in section 2, the resulting analysis has certain

technical flaws. In particular, the vector fields which correctly incorporate the ideas laid

out in the beginning of that paper are quite different from the ones used in the detailed

analysis later on.

In section 3 we made a proposal to overcome those technical problems and obtained a

consistent formulation which implements the previous ideas. However, now the symmetry

vector fields (5.8) do not have a well-defined limit at the horizon. Nonetheless both the

Hamiltonians and their Poisson brackets are well-defined. Furthermore, there is a central

charge which, following the reasoning of [44, 13], implies that the entropy is proportional

to area. While the argument has attractive features, its significance is not entirely clear

because the vector fields generating the relevant symmetries fail to admit well-defined limits

to the horizon. Presumably, this awkward feature is an indication that, in a fully coherent

and systematic treatment, the central charge would really be quantum mechanical in origin

and could be sensitive to certain details of quantization, such as the regularization scheme

used. Indeed, in the detailed analysis, we had to first evaluate the Poisson bracket and then

take the limit lim ε → 0 (see expressions (5.22) and also (5.20)), a step typical in quantum

mechanical regularization schemes. Thus, it could well be that the awkwardness stems from

the fact that, following [44, 13], we have attempted to give an essentially classical argument

for a phenomenon that is inherently quantum mechanical.

This viewpoint is supported by our analysis of section 3.1 of symmetries corresponding
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to smooth vector fields. If one requires that vector fields generating symmetries be smooth

at the horizon —a most natural condition in a fully classical setting— we found that the

central charge would be zero! Thus, the fact that the vector fields do not admit a smooth

limit to the horizon is essential to the Carlip-type analysis. The fact that one has to ‘push’

the analysis an ε away from the horizon indicates that the procedure may be a ‘short-cut’

for a more complete quantum mechanical regularization1.

This, however, raises some questions about the method in general: a) How satisfactory is

the classical analysis and how seriously should one consider such vector fields? In particular,

role of such vector fields in terms of space-time geometry is far from obvious since they are

not even defined on the horizon. b) Why should this particular algebra be the focus of

attention? c) Does the whole analysis suggest a rather transparent quantum mechanical

regularization scheme and hence, systematically constrain the quantum theory?

The fact that our final expression of entropy differs from the standard Hawking-Bekenstein

formula by a factor of
√

2 might also provide a test for theories of quantum gravity. The

value Hξ0 appearing in Cardy’s formula is of a quantum mechanical nature. A classical

calculation may not give the right numerical value for it. It then follows that a quantum

theory of gravity will give the correct value for the entropy provided it (a) has classical

general relativity as its low energy limit, and, (b) the expectation value Hξ0 is a∆κ/4πΩ

(assuming Hξ0 is well defined in quantum theory).

Another point is worth mentioning here. For the longest time black hole entropy has

been the paradigmatic problem of quantum gravity. It was believed that a correct derivation

of the entropy would provide a key test for viable theories. It is correct that black hole

entropy is a necessary test but the calculation that we have carried out in this work and the

general idea on which it is based, proposed by others before, shows that black hole entropy

is not that decisive a factor in deciding which theory of quantum gravity is right. If the
1Sometimes it is argued that only a classical central charge can give rise to the standard expression

a∆/4G~ of entropy and a central charge induced by a quantum anomaly can only give corrections to this
expression. The reasoning goes as follows. To obtain the standard entropy expression, the central charge
should go as c ∼ a∆/G~. The presence of 1/~ in this expression implies that in the (naive) classical limit of
the quantum Virasoro algebra,

[L̂n, L̂m] = (n−m)L̂n+m +
c

12
(n3 − n)δm+n , (6.1)

the central charge should survive. Note however, that in our detailed calculations, Hamiltonians, Poisson
brackets etc. are defined on an ε-stretched horizon. Thus, if in the final picture, a quantum theory does
lead to (6.1), its classical limit is likely to involve a delicate procedure, involving both ε and ~. Therefore, a
priori it is unclear whether the central charge would survive in the calculation of classical Poisson brackets
between quantities which are all well-defined at the horizon.
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quantum theories have classical general relativity as their low energy limit the symmetries

discussed in this article will be there and a central charge will be obtained.

In spite of the limitations of this calculation, the final result is of considerable interest

because it is not a priori obvious that all the relevant subtleties of the full quantum mechan-

ical analysis can be compressed in a classical calculation simply by stretching the physical

horizon an ε distance away, performing all the Poisson brackets and then taking the limit

ε → 0 in the final expressions. Note, however, that a careful treatment of technical issues

that were overlooked in [13] was necessary to bring out these features. Indeed, our analysis

provides the precise sense in which the original intention in [44, 13] of reducing the problem

to a classical calculation is borne out in a technically consistent fashion.





Appendix A

Newman - Penrose formalism in 2+1 dimensions

A.0.2 Definition of the Coefficients

In this appendix we describe a Newman - Penrose like formalism for 2+1 dimensions. The

triad we will be considering consists of the two null vectors la and na and the space - like

vector ma. The relations that we impose on these vectors are

l · l = n · n = 0, m ·m = 1 (A.1)

l ·m = n ·m = 0 (A.2)

l · n = −1. (A.3)

Unlike in 3+1 dimensions the vector ma is real. There will be no complex quantities

appearing in the Newman - Penrose formalism for 2+1 dimensions.

Given the relations between the vectors of the triad we can express the metric in terms

of the triad. We get

Lemma 1. The metric gab can be written as follows:

gab = −2l(anb) + mamb (A.4)

Its inverse is given by

gab = −2l(anb) + mamb. (A.5)

Proof. Using the relations satisfied by l, n, and m these relations can be easily verified.

We will now investigate the derivatives of the vectors in the triad. The requirement that
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lb nb mb

D la 0 −ε −κNP

∆ na 0 −γ −τ

δ ma 0 −α −ρ

Table A.1: The components of ∇alb.

l, n, and m form a triad of the above kind immediately leads to the following relations:

lb∇alb = nb∇anb = mb∇amb = 0 (A.6)

lb∇amb = −mb∇alb (A.7)

lb∇anb = −nb∇alb (A.8)

nb∇amb = −mb∇anb (A.9)

If we did not have any relations between l, n, and m we would have 3 × 3 × 3 = 27 free

parameters describing the derivatives of the basic vectors. The above equations (A.6) –

(A.9) give 3×3+3+3 = 18 relations. The number of free parameters is thus brought down

to 9. We use the notation of Stewart1 to denote these free parameters and summarize them

in the following tables A.1 – A.3.

The relations in these tables can be written as follows:

Lemma 2. We have

∇alb = −εnalb + κNP namb − γlalb

+τ lamb + αmalb − ρmamb (A.10)

∇anb = εnanb − πnamb + γlanb

−νlamb − αmanb + µmamb (A.11)

∇amb = κNP nanb − πnalb + τ lanb

−νlalb − ρmanb + µmalb (A.12)
1We have tried here to use the same notation. A problem arises because we only have m and not m and

m̄. The factors of 2 that would occur because of this have been dropped.
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lb nb mb

D la ε 0 π

∆ na γ 0 ν

δ ma α 0 µ

Table A.2: The components of ∇anb.

lb nb mb

D la κNP −π 0

∆ na τ −ν 0

δ ma ρ −µ 0

Table A.3: The components of ∇amb.
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Proof. These relations follow directly from the information that we have gathered in the

tables A.1 to A.3.

As corollary we note the following relations:

Corollary 1. We have

∇al
a = ε− ρ (A.13)

∇an
a = µ− γ (A.14)

∇am
a = π − τ (A.15)

Proof. This follows from the equations in lemma 2 and the defining relations of the triad

upon contraction of the indices.

We conclude this section with the example of the generalized BTZ black hole (see ex-

ample 2 in section 3.1 for the definition of this example).

Example 5. As an example we calculate the above coefficients for the generalized BTZ black

hole. It is easy to verify that the following equations define a triad in the whole space-time:

la = ∂υ +
1
2
(N⊥)2∂r −Nφ∂φ (A.16)

na = −∂r (A.17)

ma =
1
r
∂φ (A.18)

The corresponding one-forms are

la = −1
2
(N⊥)2dυ + dr (A.19)

na = −dυ (A.20)

ma = rNφdυ + rdφ. (A.21)
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With this triad the coefficients are:

ε =
f ′(r)

2
− r(Nφ)2 =

r

l2
− r(Nφ)2 (A.22)

γ = 0 (A.23)

α = Nφ (A.24)

κ = 0 (A.25)

τ = Nφ (A.26)

ρ = − 1
2r

(N⊥)2 (A.27)

π = Nφ (A.28)

ν = 0 (A.29)

µ = −1
r

(A.30)

The second expression for ε is the one that one obtains if one uses the function f(r) for the

BTZ black hole, namely

f(r) = −M +
r2

l2
. (A.31)

A.0.3 Curvature expressions

In this section we will calculate the components of the curvature tensor. Since we are in

2+1 dimensions all the information of the curvature tensor is contained in the Ricci tensor

Rab. We will thus calculate the different components of Rab when contracted with l, n, and

m.

To obtain these components we will make frequent use of the relation

∇a∇bt
c −∇b∇at

c = −Rc
abdt

d. (A.32)

Contracting the indices b and c we obtain

∇a∇bt
b = ∇b∇at

b −Radt
d. (A.33)

Using the tables of the previous section we give here the general expressions for the

components of the Ricci tensor.
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Lemma 3. The components of the Ricci tensor are:

Rabl
alb = −π κNP + 2α κNP − ε ρ− ρ2 + κNP τ +

+Llρ− LmκNP (A.34)

Rabl
anb = π2 − π α + 2 γ ε− ε µ + µ ρ− π τ − α τ +

+Llγ − Llµ− Lnε + Lmπ (A.35)

Rabl
amb = 2 γ κNP − π ρ− ρ τ + Llτ − LnκNP (A.36)

Rabn
alb = −π α + 2 γ ε− γ ρ + µ ρ− π τ − α τ + τ2 +

+Llγ − Lnε + Lnρ− Lmτ (A.37)

Rabn
anb = −γ µ− µ2 + π ν + 2α ν − ν τ − Lnµ + Lmν (A.38)

Rabn
amb = −π µ + 2 ε ν − µ τ + Llν − Lnπ (A.39)

Rabm
alb = −π ε + α ε + γ κNP + κNP µ− π ρ− α ρ +

+Llα− Lmε (A.40)

Rabm
anb = α γ − α µ + ε ν + ν ρ− γ τ − µ τ −

−Lnα + Lmγ (A.41)

Rabm
amb = −π2 + ε µ + 2κNP ν + γ ρ− 2 µ ρ− τ2 +

+Llµ− Lnρ− Lmπ + Lmτ (A.42)

Because the Ricci tensor is symmetric we obtain the following relations:

Corollary 2. The following relations hold:

0 = π2 − ε µ + γ ρ− τ2 − Llµ− Lnρ + Lmπ + Lmτ (A.43)

0 = π ε− α ε + γ κNP − κNP µ + α ρ− ρ τ −
−Llα + Llτ − LnκNP + Lmε (A.44)

0 = −α γ − π µ + α µ + ε ν − ν ρ + γ τ +

+Llν − Lnπ + Lnα− Lmγ (A.45)

A.0.4 Behaviour under transformations

In this section we investigate how the Newman - Penrose coefficients change under Lorentz

transformations. We begin with a boost in the plane spanned by la and na:
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la −→ c la (A.46)

na −→ 1
c

na (A.47)

ma −→ ma (A.48)

The Newman Penrose coefficients now transform as follows:

κ′NP = c2κNP π′ = π ε′ = cε + la∇ac

τ ′ = τ ν ′ = 1
c2

ν γ′ = 1
c

(
γ + 1

cn
a∇ac

)

ρ′ = cρ µ′ = 1
cµ α′ = α + 1

cm
a∇ac

(A.49)

Next we look at a null rotation:

la −→ la (A.50)

na −→ 1
2
c2la + na + cma (A.51)

ma −→ cla + ma (A.52)

The coefficients now transform as follows:

κ′NP = κNP (A.53)

τ ′ = τ +
1
2
c2κNP + cρ (A.54)

ρ′ = ρ + cκNP (A.55)

π′ = π +
1
2
c2κNP + cε + la∇ac (A.56)

ν ′ = ν +
1
2
c3ε +

1
4
c4κNP + cγ +

1
2
c2τ + c2α + c3ρ +

1
2
c2π

+
1
2
c2la∇ac + na∇ac + cma∇ac (A.57)

µ′ = µ + c2ε +
1
2
c3κNP + cα + cπ +

1
2
c2ρ +

+cla∇ac + ma∇ac (A.58)

ε′ = ε + cκNP (A.59)

γ′ = γ +
1
2
c2ε +

1
2
c3κNP + cτ + cα + c2ρ (A.60)

α′ = α + cε + c2κNP + cρ (A.61)
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A.0.5 Newman Penrose form of the connection

We can express the covariant derivative operator ∇a in terms of the connection one - form

AI
a. Using the relation

∇avb = AI
aJvJeIb, (A.62)

where eIb is the triad and using

Aa IJ = εIJKAK
a (A.63)

we arrive at

AK
a = (πna + νla − µma)lK

+(κna + τ la − ρma)nK

+(−εna − γla + αma)mK (A.64)

For the triad we obtain

eI
a = −lan

I − nal
I + mam

I . (A.65)

A.0.6 The Maxwell’s equations

The Newman-Penrose components of the field strength F are defined by

F = Φ0n ∧m + Φ1l ∧ n + Φ2l ∧m. (A.66)

The Maxwell equations are then given by

DΦ1 − δΦ0 = (π − α)Φ0 + ρΦ1 − κΦ2, (A.67)

2DΦ2 − δΦ1 = −µΦ0 + 2πΦ1 + (ρ− 2ε)Φ2, (A.68)

2∆Φ0 − δΦ1 = (2γ − µ)Φ0 − 2τΦ1 + ρΦ2, (A.69)

∆Φ1 − δΦ2 = νΦ0 − µΦ1 + (α− τ)Φ2. (A.70)
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