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Abstract

Treating the Teukolsky perturbation equation numerically as a 2+1 PDE and

smearing the singularities in the particle source term by the use of narrow gaussian dis-

tributions we have been able to reproduce earlier results for equatorial circular orbits

and radial infall trajectories that were done using the more complex and computation-

ally intensive frequency domain formalism using the Teukolsky or the Sasaki-Nakamura

equations.

A time domain prescription for a more general evolution of circular orbits inclined

with respect to the equatorial plane of the back hole simulating the orbital decay past

the ISCO and the final plunge into the black hole will be presented. This approach can

be extremely useful when tackling the more realistic problem of a compact star moving

on a general orbit around a super-massive black hole under the influence of radiation

reaction forces, since virtually all current prescriptions being considered to treat the

radiation reaction forces include time-domain ”tail-term” integrals over the past of the

particle’s worldline.
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Preface

These are ”interesting times” for relativists. We all hope that gravitational waves,

one of the key predictions of Einstein’s theory, will soon be unequivocally detected and

will become one of the most valuable tools for observational astrophysics and cosmology.

The ground-based interferometric detectors are now starting full-blown ”science runs”

and the plans for more sensitive second and even third generations are in the drawing

boards. Even LISA, the space-based observatory seems to have a very good chance to

obtain funding from ESA and NASA.

All these exciting experimental prospects for the near future drives the work of

theorists to higher levels than in the ”Golden Era” of black hole research in the ’60s and

’70s. Numerical relativity is rapidly coming of age and successfully grappling with many

interesting problems on both the computational and fundamental physics arenas that

promise many wonderful insights when solved.

This work tries to help in setting the stage for realistic calculations of what now

seems to be a very likely occurrence in active galactic nuclei: the capture of compact

stellar-sized white dwarfs or neutron stars by the supermassive black holes lurking in

the center of most galaxies. This type of events will send strong bursts of gravitational

waves right in LISA’s planned sensitivity band.

Since the captured objects are small, they can be treated in a first approximation

by the well established black hole perturbation theory. But one thorny problem still

remains that has stalled progress in this area. We can model the waves coming from
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many kinds of stationary particle orbits around the black hole, but real orbits will not be

stationary. The emission of gravitational waves will kick back the object making the orbit

decay in time. One of the challenges in this sub-field is to find workable prescriptions for

these radiation reaction forces that can be used in numerical simulations that can produce

accurate waveforms and energy fluxes for observers at large distances from the hole to

be used as templates for the interferometric detectors. The prescriptions that have been

worked out so far involve calculating quite complex integrals along the past light cone of

the particle. Since almost all perturbative treatments of particles around rotating holes

are done in the frequency domain, applying these radiation reaction schemes has been

an impossible task.

We try here to work out a simple case of radiation reaction decay for circular

adiabatic particle orbits around a rapidly rotating black hole to show how to treat this

problem perturbatively in the time domain. We hope this might help to open the door to

the use of these proposed fully relativistic radiation reaction schemes in the calculation of

the more complex but interesting problem of modeling the orbital decay and gravitational

radiation emission of particles in more general elliptic and/or inclined orbits.
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Chapter 1

Introduction

The advent of the possibility of detecting gravitational waves with large inter-

ferometers (like the LIGO or VIRGO projects now in their final construction stages) is

a very exciting prospect for relativists and astrophysicists. Besides being a formidable

test of many of the most interesting predictions of Einstein’s General Relativity in the

poorly explored strong-field regime, gravitational wave astronomy holds the promise of a

new and potentially rich way of looking at the universe in regions where electromagnetic

radiation is usually trapped or scattered. The potential for new discoveries in areas

like cosmology and galactic structure is inmense, but the experimental task of actually

detecting gravitational wave strains of the order of 10−23 with ground-based interfer-

ometers is a very difficult one. The weakness of the predicted signals requires initial

searches for very strong sources. The best theoretical candidates to date for detectable

gravity wave sources are binary black hole collisions.

The evolution of a binary black hole system can be conceptually divided into

three basic stages: (a) inspiral. At large enough separations the motion is relatively slow

and the system proceeds thru many orbits in a slowly decaying inspiral movement due to

emission of low level gravitational waves. This is analogous to what is observed in binary

pulsars and can be well treated by Post-Newtonian approximation methods that try to

match the motion and the energy fluxes as series expansion in the small parameter v/c.
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(b) plunge. When the holes are close to each other and reach relativistic velocities, the

system will pass thru the last stable orbit and the holes will plunge towards each other.

In here there are no useful approximations, (other than treating the special case of one

hole being much more smaller than the other), and each hole exerts a powerful non-linear

influence on the spacetime around its neighbor and one must rely on numerical solutions

of the full Einstein equations. The last phase is (c) the ringdown in which a common

horizon envelops the merged holes which can be treated as a distorted single black hole

and has been treated by perturbation methods[44] and in which the black holes rings

down emitting gravitational radiation in a series of characteristic quasi-normal modes

until it reaches a stationary state.

There is a very intense effort to numerically solve Einstein’s equations in full non-

linear form to provide accurate templates to aid in the detection of the waveform from

such a collision. Due to the complexity of this task, this is a very ambitious problem

still untractable even by state-of-the-art supercomputers. Full 3-D simulations using the

ADM formalism[2] may not even be well-posed mathematically and suffer from multiple

ambiguities due to difficulties in defining a proper gauge. They are memory intensive

computations that at present can only follow the motion of the holes for only a short

time, (in most cases less than a full orbit). This means that one needs astrophysically

relevant initial data with which to start the simulation when the holes are really close

to each other, and that is also a problem in which huge conceptual and computational

difficulties prevent current progress.

Approximations like treating the last stages of the collision as a perturbation from

a single stationary black hole spacetime or analyzing the case when one of the holes is
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much more massive than the other using perturbation theory are very helpful both for

aiding in the construction of a code for a full non-linear evolution and to shed light on

the fundamental physics of the collision itself.

1.1 Perturbative Black Hole Methods

In black hole perturbation theory we want to linearize the Einstein equations for

gravitational (and other matter fields) about one of the known stationary solutions that

describe a black hole. This is a simplified procedure compared to the aim of full numerical

relativity of solving the full non-linear set of equations, although the resulting equations

can be quite messy in algebraic terms. In this way we can evolve small departures from

the isolated black hole spacetime due to the presence of outside sources like particles,

gravitational waves, or even collisions with other black holes (in the “close limit” where

the two objects can be regarded as one distorted black hole). A very comprehensive

treatment of black hole perturbation theory can be found in Chandrasekhar’s classic

textbook[10].

A straightforward way to do this is to consider metric perturbations. This is

analogous to what is done in the linearized treatment of gravity when the metric is

written as gab = ηab + hab, where hab is small compared to the Minkowski metric. In

the late 50’s, Regge and Wheeler[47] were the first to do this by linearizing the vacuum

Einstein equations about the Schwarzschild metric and using the symmetries inherent in

the background metric to separate the angular and radial parts of the equation. They

expand the solution in tensor spherical harmonics, leaving a rather simple Schrödinger-

like equation to solve for the radial part of the odd-parity set of perturbations.
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In 1970, Zerilli[60] managed to do a similar construction for the even-parity metric

perturbations and obtained a second order equation on a single function of the first

order metric deviations from the Schwarzschild background that contained all relevant

information about gravitational radiation both at infinity and at the horizon. Both

formalisms made use of a particular gauge choice known as the Regge-Wheeler gauge. If

one wrote the metric perturbation functions in the Regge-Wheeler notation :

ds2 = ds2
schw

+ hαβdx
αdxβ (1.1)



5

The perturbations hαβ , which describe the deviations from spherical symmetry,

are expanded using Regge-Wheeler harmonics as

htt = (1− 2M/r)H(`m)
0 Y`m (1.2)

htr = H
(`m)
1 Y`m (1.3)

htθ = h
(`m)
0 Y`m,θ − c

(`m)
0 Y`m,φ/ sin θ (1.4)

htφ = h
(`m)
0 Y`m,φ − c

(`m)
0 sin θY`m,θ (1.5)

hrr = (1− 2M/r)−1H
(`m)
2 Y`m (1.6)

hrθ = h
(`m)
1 Y`m,θ − c

(`m)
1 Y`m,φ/ sin θ (1.7)

hrφ = h
(`m)
1 Y`m,φ + c

(`m)
1 sin θY`m,θ (1.8)

hθθ = r2K(`m)Y`m + r2G(`m)Y`m,θθ

+c(`m)
2 (Y`m,θφ − cot θY`m,φ)/ sin θ (1.9)

hθφ = r2G(`m)
(
Y`m,θφ − cot θY`m,φ

)
−c(`m)

2 sin θ(Y`m,θθ − cot θY`m,θ − Y`m/ sin2 θ)/2 (1.10)

hφφ = r2K(`m) sin2 θY`m

+r2G(`m)
(
Y`m,φφ + sin θ cos θY`m,θ

)
−c(`m)

2 sin θ(Y`m,θφ − cot θY`m,φ). (1.11)

In the Regge-Wheeler gauge choice, they can write a general gauge transformation

such that the functions G(`m), h(`m)
0 , and h

(`m)
1 vanish, leaving only four unknown

functions. This is done primarily for mathematical convenience.
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The Regge-Wheeler metric approach, even when it has been quite useful for the

Schwarzschild case, involves quite a lot of complex algebra, particularly when treating

even-parity perturbations with the Zerilli equation. It is unfeasible to extend it to the

more complex Kerr geometry. In addition, it suffers some of the same drawbacks as the

linearized GR theory, since the perturbations are coordinate gauge dependent. If one

does an infinitesimal coordinate translation xa → xa + εξa , the metric function hab

transforms as

hab → hab − 2∇(b ξa) (1.12)

The use of gauge dependent perturbations is warranted if one asks the right

questions about global properties of the gravitational radiation and avoids trying to say

anything about properties of the gravitational field at local events in the spacetime.

Still one would be able to avoid all ambiguities if only gauge independent perturbations

are considered. Moncrief[33] has devised a formalism closely related to the Zerilli one

in which one can define a gauge independent waveform, but it does not appear to be

applicable to the Kerr case.

The Kerr metric[21] is the axisymmetric solution to Einstein’s field equations that

describes the spacetime outside a stationary, rotating black hole. It is a type II-II in the

Petrov classification scheme, which means that out of the four principal null directions

that all stationary spacetimes can have it has two distinct principal null directions, (since

the other two coincide with these).

These directions are null vectors that satisfy the following condition :
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kbkcCabc[d ke] = 0 (1.13)

where the Cabcd is the Weyl tensor.

This fact will be very convenient when treating curvature perturbations using the

Newman-Penrose formalism[35] , since if one selects these principal null directions as the

basis for the NP tetrad, one gets enough relations between the various spin coefficients

to make the resulting system of equations easily solvable.

1.2 The Newman- Penrose formalism in GR

The Newman-Penrose formalism was developed to introduce spinor calculus into

general relativity. It is a special instance of tetrad calculus[59]. Let us present a brief

summary of the basic ideas behind the use of the formalism which will be used in deriving

the Teukolsky equation.

One starts by introducing a complex null tetrad { l, n, m, m
∗ } at each point in

spacetime which consists of two real null vectors l, n and one complex spacelike vector

m. These should satisfy the orthonormality relations

l · n = m ·m∗ = 1 (1.14)

with all other products being zero. Then g
ab

= −2[l(anb) −m(am
∗
b)

]. Now one defines

four directional derivative operators along the tetrad directions
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D = l
a∇

a
, ∆ = n

a∇
a
,

δ = m
a∇

a
, δ

∗ = m
∗a∇

a
. (1.15)

The basic quantities of the formalism are the spin coefficients, of which there are

twelve complex ones :

α = 1
2 (nam∗b∇

b
l
a
−m

∗a
m
∗b∇

b
m
a
),

β = 1
2 (namb∇

b
l
a
−m

∗a
m
b∇

b
m
a
),

γ = 1
2 (nanb∇

b
l
a
−m

∗a
n
b∇

b
m
a
),

ε = 1
2 (nalb∇

b
l
a
−m

a
l
b∇

b
m
a
),

λ = −m∗am∗b∇
b
n
a
, µ = −m∗amb∇

b
n
a
,

ν = −m∗anb∇
b
n
a
, π = −m∗alb∇

b
n
a
,

κ = m
a
l
b∇

b
l
a
, ρ = m

a
m
∗b∇

b
l
a
,

σ = m
a
m
b∇

b
l
a
, τ = m

a
n
b∇

b
l
a

(1.16)

The whole set of field equations in the formalism come by writing the Ricci and

Bianchi identities using these coefficients, and they take the place of the Einstein equa-

tions.

All ten independent components of the Weyl tensor can be written as five complex

scalars:
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ψ0 = −C
abcd

l
a
m
b
l
c
m
d

ψ1 = −C
abcd

l
a
n
b
l
c
m
d

ψ2 = − 1
2 C

abcd
(lamblcmd + l

a
n
b
m
c
m
∗d)

ψ3 = −C
abcd

l
a
n
b
m
∗c
n
d

ψ4 = −C
abcd

n
a
m
∗b
n
c
m
∗d (1.17)

To do perturbation calculations one specifies the perturbed geometry by intro-

ducing slight changes in the tetrad like l = l
A + l

B
, n = n

A + n
B , etc. Here the A

terms are the unperturbed values and the B ones the small perturbation. Then, all the

Newman-Penrose spin coefficients and other quantities can be also written in a similar

fashion : ψ4 = ψ
A

4
+ ψ

B

4
, etc. The perturbation equations come from the Newman-

Penrose set by keeping B terms only up to first order.
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Chapter 2

The Teukolsky Equation

The Teukolsky equation is a powerful and very convenient way to deal with gauge

invariant curvature perturbations of both the Kerr and Schwarzschild metrics, (in the

latter case, it is known as the Bardeen-Press equation). It has a very nice, separable

mathematical structure and is amenable to robust numerical integration. Many inter-

esting results have been derived leading up to the ideal situation of using it to treat the

close limit of a generic rotating black hole collision and the evolution of gravitational

waveforms from it.

Up to now, basically all treatments have been based on the separability of the

equation and calculate the energy and waveforms for the first few l multipoles of the

spheroidal harmonics expansion once the radial part has been dealt with. However, for

the purpose of detecting the gravitational waves from the inspiral collision of a binary

black hole system using laser interferometers one would like to obtain the time integration

of the full Teukolsky equation once we have started from reasonable initial data describing

the two holes in close proximity to each other.

Krivan et al. [26] have devised a procedure to evolve perturbations in time from

generic initial data using the Teukolsky equation. Their method analyzes the radiation at

infinity by dealing with the s = −2 version of the equation. They avoid fully separating

the Teukolsky function and use the ansatz
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ψ ≡ e
imφ

r
3Φ(t, r∗, θ) (2.1)

Then the equation is rewritten as a first order matrix equation and numerically

integrated. It has given encouraging results in treating scalar fields, scattering of gravi-

tational waves and analysis of quasi-normal ringing and power law tails of the outgoing

radiation. This demonstrated the feasibility of this numerical approach for the homoge-

neous Teukolsky equation.

Let us now review how previous work on solving the Teukolsky Equation has

been done and how these standard frequency domain methods compare with the newly

developed time domain based ones.

2.1 Review of the Derivation in Boyer-Lindquist coordinates

In 1973, Teukolsky[58] used the Newman-Penrose formalism to the special case

of the background geometry of a II-II type, (the Kerr or Schwarzschild black holes are

both of this type). In this way he was able to deduce the linearized equations for full

dynamical perturbations of the hole that could handle changes in its mass and angular

momentum, interaction with accreting test matter or distant massive objects, etc.

This approach has many important advantages. First, it turns out rather surpris-

ingly that the equations are separable, so that by Fourier transforming and expressing the

solution as a series expansion of spheroidal harmonics one ends up with having to solve

just an ordinary differential equation for the radial part just like in the Regge-Wheeler

case (in fact, the solutions are related to each other by a transformation operator, as
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we will discuss later). Second, since for gravitational perturbations the dependent vari-

able will be constructed out of the Weyl tetrad components ψ0 and ψ4, this will describe

gauge independent perturbations, because these are gauge-invariant quantities ( for more

details on how to determine the gauge dependence of perturbations in general, one can

look up the review by Breuer[7] ).

When one chooses the l and n vectors of the unperturbed tetrad along the re-

peated principal null directions of the Weyl tensor, then

ψ
A

0
= ψ

A

1
= ψ

A

3
= ψ

A

4
= 0

κ
A = σ

A = ν
A = λ

A = 0 (2.2)

By collecting from the Newman-Penrose equation set those that relate ψ0, ψ1 and

ψ2 with the spin coefficients and tetrad components of the stress-energy tensor, and

linearizing about the perturbed values, Teukolsky gets (after some algebra) the following

decoupled equation for the perturbed ψ0 :

[(D − 3ε+ ε
∗ − 4ρ− ρ

∗)(∆− 4γ + µ)

− (δ + π
∗ − α

∗ − 3β − 4τ)(δ∗ + π − 4α)− 3ψ2]ψB
0

= 4πT0 (2.3)
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where

T0 = (δ + π
∗ − α

∗ − 3β − 4τ)[(D − 2ε− 2ρ∗)TB
lm

− (δ + π
∗ − 2α∗ − 2β)TB

ll
] + (D − 3ε+ ε

∗ − 4ρ− ρ
∗)

× [(δ + 2π∗ − 2β)TB
lm

− (D + 2ε+ 2ε∗ − ρ
∗)TB

mm
] (2.4)

Since the full set of NP equations remains invariant under the interchange l ↔ n,

m ↔ m
∗ (this is the basis of the related GHP method [48]), then by applying this

transformation one can derive a similar equation for ψB
4

:

[(∆ + 3γ − γ
∗ + 4µ+ µ

∗)(D + 4ε− ρ)

− (δ∗ − τ
∗ + β

∗ + 3α+ 4π)(δ − τ + 4β)− 3ψ2]ψB
4

= 4πT4 (2.5)

where

T4 = (∆ + 3γ − γ
∗ + 4µ+ µ

∗)[(δ∗ − 2τ∗ + 2α)TB
nm∗

− (∆ + 2γ − 2γ∗ + µ
∗)TB

m∗m∗
] + (δ∗ − τ

∗ + β
∗ + 3α+ 4π)

×[(∆ + 2γ + 2µ∗)TB
nm∗

− (δ∗ − τ
∗ + 2β∗ + 2α)TB

nn
] (2.6)

In a similar way, one can define tetrad components of the electromagnetic field

tensor
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Φ0 = F
µν
l
µ
m
ν
, Φ1 = 1

2 F
µν

(lµnν +m
∗µ
m
ν), Φ2 = F

µν
m
∗µ
n
ν (2.7)

and get similar decoupled equations for Φ0 and Φ2. One can try these ideas with

neutrino and scalar fields also. So if one now writes the tetrads in Boyer-Lindquist [6]

coordinates t, r, θ, φ (after using the gauge freedom these coordinates have to set up the

spin coefficient ε = 0) [23, 58] they become

l
µ = [(r2 + a

2)/∆, 1, 0, a/∆], n
µ = [r2 + a

2
,−∆, 0, a]/(2Σ),

m
µ = [iasinθ, 0, 1, i/sinθ]/(

√
2(r + iacosθ)) (2.8)

where aM is the angular momentum of the black hole, Σ = r
2 + a

2
cos

2
θ, and

∆ = r
2 − 2Mr + a

2 (note that before one of the differential operators nµ∂
µ

was given

the symbol ∆, but from now on it will have the more conventional sense described here).

With these expressions one can now write explicitly the spin coefficients and ψ2. Then

it turns out that one can write all the decoupled equations for test scalar fields (s = 0),

a test neutrino field (s = ± 1
2), a test electromagnetic field (s = ±1) or a gravitational

perturbation (s = ±2) as a single master equation which is the famedTeukolsky equation :
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[
(r2 + a

2)2

∆
− a

2
sin

2
θ

]
∂
2
ψ

∂t2
+

4Mar

∆
∂
2
ψ

∂t∂φ
+

[
a
2

∆
− 1

sin2θ

]
∂
2
ψ

∂φ2

−∆−s
∂

∂r

(
∆s+1∂ψ

∂r

)
− 1
sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
− 2s

[
a(r −M)

∆
+
i cosθ

sin2θ

]
∂ψ

∂φ

−2s

[
M(r2 − a

2)
∆

− r − i a cosθ

]
∂ψ

∂t
+
[
s
2
cot

2
θ − s

]
ψ = 4πΣT (2.9)

For the case that interest us, which is where the perturbations are to be interpreted

as gravitational radiation that can be measured at infinity, the value for s = −2, and in

this case ψ = ρ
−4
ψ
B

4
, where ρ = −1/(r − i a cosθ) in the coordinates we are using, and

T = 2ρ−4
T4.

As mentioned before, this equation turns out to be separable. If one writes the

Teukolsky function as ψ = e
−i ωt

e
imφ

S(θ)R(r) then the Teukolsky equation separates

into a radial part and an angular part. The angular equation for S(θ) has as a complete

set of eigenfunctions the “spin weighted spheroidal harmonics” [56] of weight s . The

radial part has the general form

(
d

dr
p
d

dr
+ p

2
U

)
R = p

2
T (2.10)

In here, p(r) = (r2 − 2Mr)−1 and the effective potential is given by U = (1 −

2M
r )−1[(ωr)2−4iω(r−3M)]−(l−1)(l+2), while T is the source term previously defined

for s = −2. (This is for the simplified a = 0 case. A slightly more complicated version
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depending on the value of a for the fully rotating case can be found as equation (4.9) of

Teukolsky [58].)

When the angular momentum a goes to zero, the Kerr metric goes to the Schwarzschild

one and the Teukolsky equation becomes the Bardeen-Press equation. [4]

There is of course considerable interest in computing the energy carried off by

outgoing waves at infinity due to the evolution of the perturbations from some initial

data. The non-trivial information about outgoing waves at infinity is carried by the ψB
4

tetrad component. In principle, it is possible to use the solution for ψB
4

to solve the

complete Newman-Penrose set of equations for the perturbations in the metric. So, for

outgoing waves with frequency ω

ψ
B

4
= −ω2(hB

θθ
− i h

B

θφ
)/2 (2.11)

Therefore,

d
2
E

(out)

dtdΩ
= lim

r→∞
r
2
ω

2

16π

[
(hB
θθ

)2 + (hB
θφ

)2
]

= lim
r→∞

r
2

4πω2 |ψ
B

4
|2 (2.12)

2.2 Previous treatment of perturbations for orbiting particles

Both the Regge-Wheeler and the Teukolsky formalisms have been used extensively

in one of the classical test cases for this perturbation calculations : that of a particle of

mass µ � M falling into a stationary, isolated black hole. That can logically lead later

on to extensions like considering the deformation and internal dynamics of an infalling



17

star, accretion disks [37] , and hopefully the late stages of a black hole collision in a

not-too-distant future [44].

The first such calculation using a Green’s function technique to integrate the re-

cently derived Zerilli equation (the even-parity counterpart of the Regge-Wheeler equa-

tion) was done by Davis, Ruffini, Press and Price [13]. They computed for the first time

the amount of energy that was given out as gravitational waves by a particle falling

radially from infinity into a Schwarzschild black hole, and they found that it radiated

∆E = 0.0104µ2
/M in geometrized units. The radiation from the l = 2 multipole dom-

inates the spectrum and is peaked at ω = 0.32 M−1 , which is just a little below the

fundamental resonant frequency for the black hole.

Sometime later, Ruffini [49] treated the case of a particle falling radially from

infinity but with non-zero initial velocity, with the main result that the increase in

radiated energy was minimal. More general treatments were attempted by Detweiler

& Szedenits [15] which examined infall trajectories with nonzero angular momentum.

Considerable increases in the emitted gravitational radiation are seen as the normalized

angular momentum of the trajectory J/µM increases from 0 to close to 4M (where the

particle approaches a marginally bound, circular orbit). Increases in ∆E by a factor of

50 are found at the high J end.

The first calculation involving particles going into a Kerr black hole was carried

out by Sasaki and Nakamura [52] who considered a particle falling radially along the

symmetry axis of the hole. Several studies (all in the frequency domain) have been

carried out dealing with infall in the equatorial plane (and the effect of the rotational

frame dragging) [24], and with infall trajectories with finite angular momentum [25].
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Quite a few detailed simulations of the gravitational waves emitted by a particle

in a bound orbit around the black hole have also been carried out in recent years. The

first results for radiation emitted by a particle in orbit around a Schwarzschild black hole

were carried out by Detweiler, who was a pioneer in these techniques [14]. In a series of

six papers, Poisson and various collaborators studied in detail using both analytic and

numerical techniques the gravitational wave emission to infinity and into the horizon of a

particle in circular orbit around a non-rotating hole [42, 39, 11, 41, 40, 1]. They used the

Teukolsky equation in the frequency domain to do high accuracy numerical simulations

of the orbiting particle as well as to calculate very high order Post-Newtonian corrections

to the basic quadrupolar formula for the gravitational wave emission from the orbit.

Various researchers in Kyoto, Osaka and Waseda Universities in Japan have been

doing extensive work on Post-Newtonian expansions for various types of particle orbits

around Kerr holes based on a perturbative treatment as the exact relativistic model

which motivates the various high order corrections [31]. They have worked on eccentric

orbits around Schwarszchild[57], circular orbits slightly inclined away from the equatorial

plane of Kerr holes[53], and particles with spin orbiting Kerr holes on equatorial circular

orbits[55].

All this work has been done using a decomposition of the Teukolsky equation into

spheroidal harmonics afforded by working in the frequency domain where the equation

is fully separable. Let us briefly review exactly how this is done, and why from a strictly

numerical point of view a switch in treating the Teukolsky equation in the time domain

where it does not fully separate might be useful.
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Authors Type of result
Davis, Ruffini, radial infall from ∞

Press & Price (1971) into Schwarzschild BH
Detweiler (1978) equatorial

Poisson (1993,1995) circular orbits around Kerr BH
infall trajectories with

Kojima & Nakamura (1984) ang mom 6= 0
infall along symmetry

Sasaki & Nakamura (1982) axis of Kerr BH
spinning particles in

Tanaka et al (1996) circ equatorial orbits
slightly eccentric and

Hughes (1999) non-equatorial orbits

Table 2.1. Some of the more relevant frequency domain results that have appeared in
the recent literature.

2.3 Traditional Solution Method in the Frequency Domain

When the Teukolsky equation is fully separated one can write the ψ4 independent

variable as

ψ4 =
1

r4

∑
lm

∫
dωe

−iωt
−2Ylm(θ, ϕ)R

lmω
(r) (2.13)

where −2Ylm(θ, ϕ) are the spheroidal harmonics of spin weight s = −2 which

satisfy the angular equation

1
sin θ

d

dθ

sin θ
d
s
Y
aω

lm
dθ

+
[
(aω)2 cos2 θ − 2aωs cos θ

−

(
m

2 + 2ms cos θ +
s
2

sin2 θ

)
+ E

lm

]
s
Y
aω

lm
= 0. (2.14)
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In here E
lm

is the angular eigenvalue for which the equation has a solution
s
Y
aω

lm
.

The radial part of the Teukolsky equation is then given by

∆2 d
dr

(
1
∆

dR
lmω
dr

)
− V (r)R

lmω
= T

lmω
(2.15)

in which the potential can be written as

V (r) =
r
2

∆

[
ω

2
r
2 − 4iω(r − 3M)

]
− λ, ∆ = r(r − 2m), (2.16)

and λ = (l − 1)(l + 2) is the eigenvalue of the s = −2 spheroidal harmonics.

The source term for this radial equation is constructed out of the stress-energy tensor

in a somewhat similar fashion as we will detail later on for the time domain Teukolsky

equation[31].

To solve Eq. (2.15), one constructs a Green function and the trick is to get the

appropriate boundary conditions. As with all black hole spacetimes, the physically

motivated boundary conditions consist on having waves purely ingoing at the horizon

and purely outgoing at infinity. Then one only has to consider the following independent

solutions of the homogeneous equation :

R
in →


B

trans∆2
e
−iωr∗ for r → 2M,

r
3
B

ref
e
iωr

∗
+ r

−1
B

inc
e
−iωr∗ for r → +∞,

(2.17)

R
out →


C

up
e
iωr

∗
+ ∆2

C
ref
e
−iωr∗ for r → 2M,

r
3
C

trans
e
iωr

∗
for r → +∞,

(2.18)
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where r∗ is the usual tortoise coordinate[47]. Then one can construct a solution

as

R
lmω

=
1
W

Rout
∫
r

2M
dr
′ R

in
T
lmω

∆
+R

in
∫ ∞

r
dr
′ R

out
T
lmω

∆

 (2.19)

in where the Wronskian is given by

W =
1
∆

[(
d

dr
R

out
)
R

in −R
out
(
d

dr
R

in
)]

= 2iωCtrans
B

inc (2.20)

As one pushes the radius that one is interested on evaluating the function to

extract gravitational wave information, the asymptotic behavior of the solution shows

that

R
lmω

(r →∞) =
r
3
e
iωr

∗

2iωBinc

∫ ∞

2M
dr
′Tlmω(r′)Rin(r′)

∆2(r′)

≡ Z̃
lmω

r
3
e
iωr

∗
(2.21)

The source term T
lmω

is constructed by an analogous process to that used to

obtain Eq. (2.6) out of the stress energy tensor for a point particle

T
µν =

µ

Σ sin θdt/dτ
dz
µ

dτ

dz
ν

dτ
δ(r − r(t))δ(θ − θ(t))δ(ϕ− ϕ(t)) (2.22)

The source term used in the Green Function construction will be given by
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T
lmω

= 4
∫
ρ
−5
ρ̄
−1(B′

2
+B

′∗
2

)e−imφ+iωt
−2S

aω

lm
dΩdt, (2.23)

where

B
′
2

= −1
2
ρ
8
ρ̄L−1[ρ−4

L0(ρ−2
ρ̄
−1
T
nn

)]

− 1
2
√

2
ρ
8
ρ̄∆2

L−1[ρ−4
ρ̄
2
J+(ρ−2

ρ̄
−2∆−1

T
m̄n

)] (2.24)

B
′∗
2

= −1
4
ρ
8
ρ̄J+[ρ−4

J+(ρ−2
ρ̄T
m̄m̄

]

− 1
2
√

2
ρ
8
ρ̄∆2

J+[ρ−4
ρ̄
2∆−1

L−1(ρ−2
ρ̄
−2
T
m̄n

)]. (2.25)

The operators L
s

and J+ are defined as

L
s

= ∂
θ

+
m

sin θ
− aω sin θ + s cot θ (2.26)

and

J+ = ∂
r

+ i
K

∆
. (2.27)

Since the radiation will be emitted at discrete harmonics of the orbital frequencies,

one can see that

Z̃
lmω

= Z
lm

∑
k

δ(ω − Ω
mk

) (2.28)
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, in which the various compound harmonic frequencies Ω
mk

= mΩ
φ

+ kΩ
θ

are

composed of the periods for θ and φ motions in the case of particle orbits around the

massive hole. The connection of this solution with the gravitational radiation emitted

by the perturbed system is encoded in the relation

ψ4 =
1
2
(ḧ+ − iḧ×) (2.29)

So that according to the expansion we did in Eq. (2.13)

h+ − ih× = −2
r

∑
lm

∫
dω

ω2 Z̃lmω −2Ylm(θ, ϕ) e−iω(t−r∗) (2.30)

And finally, in this commonly used formalism, the energy flux at infinity is given

by

〈
dE

dt

〉
=

∞∑
l=2

l∑
m=1

|Z
lm
|2

2πω2
m

(2.31)

If one is evaluating perturbations due to particles in orbit around a central black

hole, to get good accuracies this procedure has to be done for values of l up to 12 for

various harmonic frequencies, (more and more compound frequencies are involved for

non-equatorial orbits as we will see later), requiring close to 3000 iterations on a rather

complex numerical algorithm that involves all of the previously outlined steps and in

some cases, quite more[19, 11].



24

2.4 Evolving the Teukolsky equation numerically in time

I will do all my work with the main numerical solutions provided by the latest

version of a code originally developed by Laguna and collaborators[26] to evolve solutions

of the Teukolsky equation in the time domain. In this case one will start with approxi-

mate initial data in a time slice provided by a point particle moving in orbit at a finite

distance from the central large black hole. Although the techniques for dealing with the

ψ4 perturbations are more developed in the frequency domain, from a numerical point

of view it is more feasible in this and other related cases to work in the time domain.

Fourier transforming the initial data and performing the evolution with the separable

equation for each frequency and transforming back the data on each desired time slice is

more expensive than just evolving a more complex equation directly on the time domain.

Mainly due to the fact that one would need a number of frequencies that is much greater

than the number of angular components required to resolve the θ direction [26].

The Teukolsky code in the time domain rewrites the main equation (Eq. 2.9)

as a couple of first order 2+1 partial differential equations for a main independent field

proportional to the ψ4 scalar and an auxiliary conjugate field.

The process starts by postulating an ansatz for the ψ function in Eq. (2.9) of the

form

ψ = Ψ(r, t, θ) eimφ (2.32)

And to match this φ dependence, one would also want to write the source term

as a similar Fourier decomposition
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T = T
m

(r, t, θ) eimφ (2.33)

For the sake of clarity in following the derivation of the evolution equation used

in the code, let us rewrite here the main time domain Teukolsky equation :

[
(r2 + a

2)2

∆
− a

2
sin

2
θ

]
∂
2
ψ

∂t2
+

4Mar

∆
∂
2
ψ

∂t∂φ
+

[
a
2

∆
− 1

sin2θ

]
∂
2
ψ

∂φ2

−∆−s
∂

∂r

(
∆s+1∂ψ

∂r

)
− 1
sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
− 2s

[
a(r −M)

∆
+
i cos θ

sin2θ

]
∂ψ

∂φ

−2s

[
M(r2 − a

2)
∆

− r − i a cos θ

]
∂ψ

∂t
+
[
s
2
cot

2
θ − s

]
ψ = 4πΣT (2.34)

After eliminating the constant factors eimφ and 1/∆, and rearranging a little we

have

−
[
(r2 + a

2)2 − a
2∆sin2

θ
]
∂
2Ψ
∂t2

−
[
4iMarm+ 2s

(
r∆−M(r2 − a

2) + i a∆cosθ
)]

∂Ψ
∂t

+∆−s+1 ∂
∂r

(
∆s+1 ∂Ψ

∂r

)
+ ∆
sinθ

∂
∂θ

(
sinθ∂Ψ

∂θ

)
+2sim

[
a(r −M) + i∆cosθ

sin2θ

]
Ψ−∆

[
s
2
cot

2
θ − s

]
Ψ

+m2
[
a
2 − ∆

sin2θ

]
Ψ = −4πΣ∆T

m
(2.35)

This can be simplified into
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− ∂
2Ψ

∂t2
−A

∂Ψ
∂t

+
1

Σ∗∆s−1
∂

∂r

(
∆s+1∂Ψ

∂r

)

+
∆

Σ∗sinθ
∂

∂θ

(
sinθ

∂Ψ
∂θ

)
− ṼΨ =

−4πΣ∆T
m

Σ∗
(2.36)

with the following term definitions:

Σ∗ ≡ (r2 + a
2)2 − a

2∆sin2
θ (2.37)

A ≡ 1
Σ∗
[
2s(r∆−M(r2 − a

2)) + i (2sa∆cosθ + 4Marm)
]

(2.38)

Ṽ ≡ 1
Σ∗

(
−2isma(r −M) +

2sm∆cosθ

sin2θ

+ ∆
[
s
2
cot

2
θ − s

]
+m

2
[

∆

sin2θ
− a

2
])

(2.39)

One now switches from the radial Boyer-Lindquist coordinate to the Kerr tortoise

coordinate[26] defined such that

∂

∂r
=

(r2 + a
2)

∆
∂

∂r∗
(2.40)
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This will affect only the third term in Eq. (2.36). If one now proceeds by further

decomposing the function Ψ into

Ψ(r, t, θ) ≡ Φ(r, t, θ)
f(r)

,

f(r) ≡
√

∆s(r2 + a2) (2.41)

, then Eq, (2.36) becomes

− ∂
2Ψ

∂t2
−A

∂Ψ
∂t

+
(r2 + a

2)f
Σ∗∆s

∂
2Φ

∂r∗2
+

∆
Σ∗sinθ

∂

∂θ

(
sinθ

∂Ψ
∂θ

)

−ṼΨ− (r2 + a
2)Φ

Σ∗∆s
∂
2
f

∂r∗2
=
−4πΣ∆T

m
Σ∗

(2.42)

So, after a little algebraic manipulation we finally rewrite the Teukolsky equation

in the form used in the evolution code:

−∂
2Φ

∂t2
−A

∂Φ
∂t

+ b
2 ∂

2Φ

∂r∗2
+

∆
Σ∗sinθ

∂

∂θ

(
sinθ

∂Φ
∂θ

)
− V Φ =

−4πΣ∆fT
m

Σ∗
(2.43)

with
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V ≡ Ṽ +
f(r2 + a

2)
Σ∗∆s

∂
2
f

∂r∗2

b ≡ (r2 + a
2)√

Σ∗
. (2.44)

An auxiliary field Π is now introduced for the purpose of turning Eq. (2.43) into

a set of two coupled first-order equations in space and time, chiefly because it will be

more convenient to integrate it numerically using standard techniques.

Π = ∂Φ
∂t + b ∂Φ

∂r∗
(2.45)

∂Π
∂t + b ∂Π

∂r∗
= b(A− ∂b

∂r∗
) ∂Φ
∂r∗

+ ∆
Σ∗sinθ

∂
∂θ

(
sinθ∂Φ

∂θ

)
−AΠ− V Φ +

4πΣ∆f T
m

Σ∗
(2.46)

This first order system is hyperbolic in the radial direction [26]. The system

constituted by Eqs. (2.45) and (2.46) is discretized on a two dimensional polar grid.

We work with a numerical code that produces very stable evolutions using a two-step

Lax-Wendroff method [43]. The basic idea is to define a vector of all the components

of the evolution field u = {Φ
R
,Φ
I
,Π

R
,Π

I
} and combine Eqs. (2.45) and (2.46) into a

system of the form

∂
t
u + D∂

r∗u = S (2.47)
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where one can write D as

D =



−b 0 0 0

0 −b 0 0

b(A
R
− ∂b
∂r∗

) −bA
I

−b 0

bA
I

b(A
R
− ∂b
∂r∗

) 0 −b


and S as

S =



Π
R

Π
I

∆
Σ∗sinθ

∂
∂θ

(
sinθ

∂Φ
R

∂θ

)
−A

R
Π
R

+A
I

Π
I
− V

R
Φ
R

+ V
I
Φ
I

+
4πΣ∆f T

mR
Σ∗

∆
Σ∗sinθ

∂
∂θ

(
sinθ

∂Φ
I

∂θ

)
−A

R
Π
I
−A

I
Π
R
− V

R
Φ
I
− V

I
Φ
R

+
4πΣ∆f T

mI
Σ∗



,and where A
R

and A
I

are the real and imaginary parts of the A coefficient

defined above, and similarly for V
R

, V
I
, T

mR
and T

mI
.

In the first Lax-Wendroff step one defines half-grid intermediate values un+1/2

i+1/2

by discretizing (2.47) like

un+1/2

i+1/2
=

1
2

(
un
i+1

+ un
i

)
− δt

2

[
1
δr∗

Dn

i+1/2

(
un
i+1

− un
i

)
− Sn

i+1/2

]
(2.48)

, where the angular indices have been omitted and are there in implicit form. All

radial derivatives are taken by centered differences between values of i and i + 1, and all
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other algebraic terms in Dn

i+1/2
and Sn

i+1/2
are calculated by averaging over the values

at i and i + 1.

As in other applications of this Teukolsky code, we impose boundary conditions

at the edges of the polar computational domain, i.e. at the black hole horizon, at the

rotation axis and at the far end of the radial grid. The condition near the horizon is

Φ = Π = 0, due to the known asymptotic behavior of the fields[26, 58]. At the outer

boundary we impose outgoing boundary conditions. These are not perfect and errors

due to reflection from this boundary bounce back into the computational domain. We

now deal with this by making the computational domain so large in the radial direction

that any numerical reflections will not make it back to the point where we compute the

waveforms and energy flux in the time allotted for the simulation. At the axis of rotation

of the black hole one imposes the either the condition Φ = 0 or ∂
θ
Φ = 0 depending on the

parity of the field specified by the azimuthal integer m. To avoid numerical instabilities

at large values of m due to the nature of the real potential of the Teukolsky equation

near the horizon, we also impose the secondary condition ∂
θ,θ

Φ = 0. We discuss in more

detail the rationale behind our (admittedly bad) choice of initial data slice at the end of

Section 3.2.

Grids typically used in this work with particle source terms are with −50M ≤

r
∗
i
≤ 400M and 0 ≤ θ

j
≤ π with i ' 4000 and j ' 20.
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Chapter 3

The Matter Source Term

3.1 Explicit General Form of the source

In Eq. (2.34), the source term T for the case in which s = −2 and the independent

field is Ψ = ρ
−4
ψ4 ,(for which the Weyl scalar ψ4 = −C

αβγδ
n
α
m
∗β
n
γ
m
∗δ), will be

given by T = 2ρ−4
T4.

The T4 expression was derived in Sec. (2.1), and its full expression is

T4 = (∆ + 3γ − γ
∗ + 4µ+ µ

∗)[(δ∗ − 2τ∗ + 2α)T
nm∗

− (∆ + 2γ − 2γ∗ + µ
∗)T

m∗m∗ ] + (δ∗ − τ
∗ + β

∗ + 3α+ 4π)

×[(∆ + 2γ + 2µ∗)T
nm∗ − (δ∗ − τ

∗ + 2β∗ + 2α)T
nn

] (3.1)

In Boyer-Lindquist coordinates, with the use of the Kinnersley null tetrad[23] :

l
µ = [(r2 + a

2)/∆, 1, 0, a/∆], n
µ = [r2 + a

2
,−∆, 0, a]/(2Σ),

m
µ = [iasinθ, 0, 1, i/sinθ]/(

√
2(r + iacosθ)) (3.2)
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, the relevant Newman-Penrose differential operators and spin coefficients are

explicitly written in the following form

∆ = n
µ
∂
µ

δ
∗ = m

∗µ
∂
µ

ρ = − 1
r−a i cos(θ)

τ = −a i ρ ρ
∗ sin(θ)√
2

π = a i ρ
2 sin(θ)√

2

β = −ρ
∗ cot(θ)√

2

α = π − β
∗

µ = ρ
2
ρ
∗∆

2

γ = µ+ ρ ρ
∗ (r−M)

2 (3.3)

The differential operators in the source term (3.1) will be expanded like

∆ =
(
(r2 + a

2) ∂∂t − (r2 − 2Mr + a2) ∂∂r + a ∂
∂φ

)
/(2Σ)

δ
∗ = 1√

2(r−ia cos θ)
(−ia sin θ ∂∂t + ∂

∂θ − i csc θ ∂∂φ) (3.4)

The complete source term after all terms in (3.1) are explicitly written in our

chosen coordinate system and some algebra is carried out becomes
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T
nn

((
(−r+i a cos(θ)) cot(θ)+7 i a sin(θ)√

2 (r−i a cos(θ))2
− τ
) (

−i
√

2 a sin(θ)

(r−i a cos(θ))2
+ τ
)

−
i
√

2 a cos(θ)
(r−i a cos(θ))2

+
2
√

2 a2 sin(θ)2

(r−i a cos(θ))3
−∂θτ

√
2 (r−i a cos(θ))

)
+ T

mm

((
−µ

∗
+ 2 i a cos(θ) ∆

Σ2

)
(
3 γ − γ

∗ − (5 r+3 i a cos(θ)) ∆

2 Σ2

)
+

∆

(
−2 i a cos(θ) ∆′

Σ2 +∂rµ
∗
+

4 i a cos(θ) ∆ ∂rΣ

Σ3

)
2 Σ

)
+

T
nm

(
(2 α− 2 τ)

(
3 γ − γ

∗ − ∆ (5 r+3 i a cos(θ))

2 Σ2

)
+
(
2 γ + 2 µ

∗
)

(
−τ + (−r+i a cos(θ)) cot(θ)+7 i a sin(θ)√

2 (r−i a cos(θ))2

)
+

2 ∂θγ+2 ∂θµ
∗

√
2 (r−i a cos(θ))

− ∆ (2 ∂rα−2 ∂rτ)
2 Σ

)
+

∂
φ
(T

mm
)

(
−

(
a

(
µ
∗− 2 i a ∆ cos(θ)

Σ2

))
2 Σ

−
a

(
3 γ−γ

∗−∆ (5 r+3 i a cos(θ))
2 Σ2

)
2 Σ

− a ∆ ∂rΣ

4 Σ3

)
+

∂
φ
(T

nm
)

(
− i ∆ csc(θ)

2
√

2 Σ (r−i a cos(θ))2
+

a

(
−τ+

(−r+i a cos(θ)) cot(θ)+7 i a sin(θ)√
2 (r−i a cos(θ))2

)
2 Σ

−

i csc(θ)
(
3 γ−∆ (5 r+3 i a cos(θ))

2 Σ2 −γ
∗
+2 γ+2 µ

∗
)

√
2 (r−i a cos(θ))

− a ∂θΣ

2
√

2 Σ2 (r−i a cos(θ))
+ a (2 α−2 τ)

2 Σ

)
+

∂
φ
(T

nn
)

(
i csc(θ)

(
−2τ+

(−r+i a cos(θ)) cot(θ)+7 i a sin(θ)√
2 (r−i a cos(θ))2

+
i
√

2 a sin(θ)
(r−i a cos(θ))2

)
√

2 (r−i a cos(θ))
+

a−i r cos(θ) cot(θ)−a cos(θ)
2

cot(θ)

2 (r−i a cos(θ))3

)
− a

2
∂φ,φ(Tmm)

4 Σ2 − i a csc(θ) ∂φ,φ(Tnm)
√

2 Σ (r−i a cos(θ))
+

csc(θ)
2

∂φ,φ(Tnn)

2 (r−i a cos(θ))2
+

∂
θ
(T

nm
)

(
∆

2
√

2 Σ (r−i a cos(θ))2
+

3 γ−∆ (5 r+3 i a cos(θ))
2 Σ2 −γ

∗

√
2 (r−i a cos(θ))

+ 2 γ+2 µ
∗

√
2 (r−i a cos(θ))

)
+

∂
θ
(T

nn
)

(
2
√

2 r
2

τ−2
√

2 a
2

τ cos(θ)
2
+r cot(θ)−8 i a sin(θ)−i a cot(θ) (cos(θ)+4

√
2 r τ sin(θ))

2 (r−i a cos(θ))3

)
+

a ∂θ,φ(Tnm)
√

2 Σ (r−i a cos(θ))
+

i csc(θ) ∂θ,φ(Tnn)

(r−i a cos(θ))2
− ∂θ,θTnn

2 (r−i a cos(θ))2
+

∂
r
(T

mm
)

(
−∆ (5 r ∆−6 γ Σ

2
+7 i a ∆ cos(θ)+2 Σ

2
γ
∗−2 Σ

2
µ
∗)

4 Σ3 +
∆

2
∂rΣ

4 Σ3 − ∆ ∆
′

4 Σ2

)
+

∂
r
(T

nm
)

(
−∆ (α−τ)

Σ
−

∆

(
−τ+

(−r+i a cos(θ)) cot(θ)+7 i a sin(θ)√
2 (r−i a cos(θ))2

)
2 Σ

+
∆ ∂θΣ

2
√

2 Σ2 (r−i a cos(θ))

)
+

a ∆ ∂r,φ(Tmm)

2 Σ2 +
i ∆ csc(θ) ∂r,φ(Tnm)
√

2 Σ (r−i a cos(θ))
− ∆ ∂r,θ(Tnm)

√
2 Σ (r−i a cos(θ))

− ∆
2

∂r,r(Tmm)

4 Σ2 +

∂
t
(T

mm
)

(
(a

2
+r

2) (5 r ∆−6 γ Σ
2
+7 i a ∆ cos(θ)+2 Σ

2
γ
∗−2 Σ

2
µ
∗−∆ ∂rΣ)

4 Σ3 + r ∆
2 Σ2

)
+

∂
t
(T

nm
)

(
(a

2
+r

2)
(

2 (α−τ)−τ+
−((r−i a cos(θ)) cot(θ))+7 i a sin(θ)√

2 (r−i a cos(θ))2

)
2 Σ

−
i
2 a ∆ sin(θ)

√
2 Σ (r−i a cos(θ))2

−

(a
2
+r

2) ∂θΣ

2
√

2 Σ2 (r−i a cos(θ))
− a sin(θ) (−5 r ∆+2 γ Σ

2−3 i a ∆ cos(θ)−2 Σ
2

γ
∗−4 Σ

2
µ
∗)

2
√

2 Σ2 (i r+a cos(θ))

)
+

∂
t
(T

nn
)
(

a (−i a+r cos(θ))

2 (i r+a cos(θ))3
+ i a sin(θ)√

2 (r−i a cos(θ))

(
−2 τ + cot(θ)√

2 (−r+i a cos(θ))
+ 9 i a sin(θ)√

2 (r−i a cos(θ))2

))
−

a (a
2
+r

2) ∂t,φ(Tmm)

2 Σ2 + ∂
t,φ

(T
nm

)

(
−i (a

2
+r

2) csc(θ)
√

2 Σ (r−i a cos(θ))
− i a

2
sin(θ)√

2 Σ (r−i a cos(θ))

)
+

a ∂t,φ(Tnn)

(r−i a cos(θ))2
+

(a
2
+r

2) ∂t,θ(Tnm)
√

2 Σ (r−i a cos(θ))
+

i a sin(θ) ∂t,θ(Tnn)

(r−i a cos(θ))2
+

(a
2
+r

2)∆ ∂t,r(Tmm)

2 Σ2 +

i a ∆ sin(θ) ∂t,r(Tnm)
√

2 Σ (r−i a cos(θ))
− (a

2
+r

2)2 ∂t,t(Tmm)

4 Σ2 − i a (a
2
+r

2) sin(θ) ∂t,t(Tnm)
√

2 Σ (r−i a cos(θ))
+

a
2

sin(θ)
2

∂t,t(Tnn)

2 (r−i a cos(θ))2

(3.5)



34

, where for clarity the subscript m in the various tetrad contractions of the stress-

energy tensor refers to contraction with the m∗ complex vector.

In our simulations we consider a non-spinning point particle of mass µ moving in

the exterior of a rotating Kerr black hole, for which the stress-energy tensor takes the

form

T
µν =

µ

Σ sin(θ) dt/dτ
dz
µ

dτ

dz
ν

dτ
δ(r − r(t))δ(θ − θ(t))δ(φ− φ(t)) (3.6)

, where zµ is taken to be a geodesic trajectory to first order and τ = τ(t) is the

proper time of the particle as it moves along that geodesic.

If one substitutes the explicit geodesic equations (4.6 - 4.9), (which we will discuss

in more detail in the following section) in the previous expression for the particle stress-

energy tensor and contract it with the appropriate full blown expressions for the null

tetrad (3.2) we get that[31]

T
nn

= µ
C
nn

sin θ
δ (r − r(t)) δ (θ − θ(t)) δ (φ− φ(t)) , (3.7)

T
mn

= µ
C
mn

sin θ
δ (r − r(t)) δ (θ − θ(t)) δ (φ− φ(t)) , (3.8)

T
mm

= µ
C
mm

sin θ
δ (r − r(t)) δ (θ − θ(t)) δ (φ− φ(t)) , (3.9)

where
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C
nn

=

(
E
(
a
2 + r

2
)

+ Σ dr
dτ − aL

z

)2

4 ṫΣ3 , (3.10)

C
mn

= − ρ

2
√

2Σ2ṫ

(
E(r2 + a

2)− aL
z

+ Σ
dr

dτ

)(
i sin θ(aE −

L
z

sin2 θ
)

)
, (3.11)

C
mm

=
ρ
2

2Σṫ

(
i sin θ(aE −

L
z

sin2 θ
)

)2
(3.12)

and in which ṫ = dt/dτ .

3.2 Specifying the particle trajectory on the computational grid (initial

data issues)

In this thesis, I will concentrate on non-equatorial circular orbits as a test case

to be used in all calculations since they offer the possibility of incorporating a so called

“poor man’s radiation reaction” approach pioneered by Hughes [19]. This is a simple

and realistic approximation for specifying orbital decay due to emission of gravitational

waves for this particular set of special orbits. The rest of this section and Section (4.2)

in the following chapter discussing the implementation of radiation reaction in circular

inclined orbits follow closely his approach to this topic. Since a circular orbit evolves to

another circular orbit, we will then see that a prescription to calculate the change in the

orbit’s parameters can be consistently given to allow for evolving the orbit in time up to

the innermost stable circular orbit (ISCO) in principle.

As we detailed at the end of section (2.4), we will have the code evolving the

Teukolsky equation in a 2-D grid with typical resolutions of 0.1M per gridpoint in the
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radial direction, and about 0.3 radians per gridpoint in the θ angular direction. From the

full-blown expression we will code in the source subroutine, one can see, (for example,

refer to Eqs. (3.10)-(3.12)), that in the time domain evolution the Dirac Delta functions

remain as part of the source term even when they usually go out in the Fourier decom-

position when one does the time integration. Since we do not go thru that step in this

formalism, one must resort to some sort of approximation for handling the delta function

in the numerical implementation, since it is unlikely to have the particle’s position lying

exactly on a point in the computational grid.

One option would have been to calculate the position of the particle in each

timestep, and then perform an integration in a grid cell using ”advanced time” (v = t+r∗)

and ”retarded time” (u = t − r
∗) mixed coordinates, and then assign weighted average

amounts of the source quantity so computed to each neighboring grid point depending

on how close it was to the actual position of the particle according to the equations of

motion[29]. For our purposes of trying to incorporate the effects of radiation reaction

to the orbit of the particle as a function of time, this approach would not be convenient

and would require heavy modifications to our geodesic integrators and to the prescription

being used to calculate the effects of radiation reaction on circular orbits.

Since the beginning of this project, we opted for a different approximation used

by other researchers[50] that consists of treating the position delta functions as very

narrow gaussian distributions

δ(x− x(t)) ≈ 1√
2π σ

exp

(
−(x− x(t))2

2σ2

)
for σ small. (3.13)
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One must show that this substitution is appropriate by showing convergence of

the obtained waveform as σ → 0, and one must take special care in normalizing the mass

correctly as the particle moves in the background Kerr spacetime so that integration over

the whole gaussian density profile gives a constant mass throughout the whole trajectory.

Basically the criteria that the narrow gaussian approximation must satisfy while

the particle moves thru a geodesic orbit is that
∫
δ
3(~x − ~x(t))

√
g(3)d3x = 1, where for

the usual gaussian expression like that in (3.13) the 3-metric over which this property

occurs is the 3-metric of flat-space. Therefore, to obtain a particle of constant mass µ as

it moves in the background black hole spacetime we normalize the mass-density of the

particle by the factor

N =

√
γ(3)√
g(3)

, (3.14)

where γ(3) is the 3-metric of flat space and g(3) is the 3-metric of a slice of constant

Boyer-Lindquist time of the Kerr spacetime. We then normalize the particle mass as it

moves thru the space by multiplying the quantity µ in the expressions (3.7) - (3.9) by

this factor N .

The δ(φ− φ(t)) function we handled analytically since the code only evolves the

Teukolsky function Φ of Eq.(2.43) in 2 dimensions. Therefore in the code we made the

following substitutions in each expanded term in Eq.(3.5)
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δ(φ− φ
p
) → −1

2π
e
imφ

p (3.15)

∂
φ
δ(φ− φ

p
) → −im

2π
e
imφ

p (3.16)

∂
φ,φ

δ(φ− φ
p
) → m

2

2π
e
imφ

p (3.17)

,where φ
p

indicates the calculated φ coordinate of the particle for the timestep

in which the source term is being computed according to the geodesic equation for the

current circular orbit.

Another subtle computational issue in this approach is that in all terms of Eq.(3.5)

we tacitly evaluate the source term dependence on r at the value r
p
, (the radius of the

circular orbit in which the particle is at that time) instead of at the value of the Boyer-

Lindquist radial coordinate in each point of the computational grid. As in Ref. [50], we

have tried evaluating it both ways and for the accuracy level of our numerical evolutions

the actual difference is negligible.

We also have to explain our handling of the initial data slice at which the evolution

begins. In the simplest case possible, we started with a flat Φ = Π = 0 set, which

corresponds to a vacuum configuration with no orbiting particle in which the spacetime is

just the stationary Kerr background. In the subsequent timesteps the non-homogeneous

Teukolsky evolution is set into motion, with the source term being that of Eq.(3.5).

This is like the particle appearing out of nowhere which produces an artificial burst of

radiation flowing away from the starting location of the particle. If we specify a large

enough grid in the radial direction such that in the time for this burst to reach the outer
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boundary and bounce back to the location in which the waveforms, energies and angular

momentum fluxes are being calculated, the particle can complete a few orbits, then we

can get enough data to calculate what the next radius and inclination angle are after

the effects of the radiation reaction prescription we are using are taken into account.

Therefore, for periodic orbits the details of the initial data are not crucial and the errors

introduced initially by a bad choice of initial data propagate away from the point where

all relevant computations are taking place and only constrain the length of time available

for the simulation of each member of the orbital decay sequence.

To get more realistic initial data slices, one could try constructing initial data sets

that correctly satisfy the Hamiltonian and momentum constraints with prescriptions like

that of Bowen and York[5] ,(which are of common use in numerical relativity circles),

or modifications of particle limit data sets such as those of Lousto and Price[30]. These

prescriptions specify the (γ
ij
,K

ij
) sets for use in standard ADM evolutions. To convert

these quantities to the set (Φ, δ
t
Φ) needed for the Teukolsky evolution, one can use the

formulae developed in Ref.[9] developed for use with the close-limit formulation. We

plan to explore in some future work the extent of the benefits that this more accurate

prescriptions may bring to prolong the orbital simulations in the particle limit case in

the near future.
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Chapter 4

Implementation of Radiation Reaction Effects

4.1 Effects of radiation reaction in particle orbits

From the standpoint of LISA observations, we want to study the case of a rel-

atively small compact object orbiting and slowly spiraling into a large supermassive

black hole, like the ones people currently suspect to be lurking inside the nuclei of many

galaxies.

Fig. 4.1. Schematic diagram of a compact object orbiting a supermassive black hole.

In the case of general elliptical orbits the motion could be characterized by various

characteristic orbital frequencies. First, the particle will cycle around the ellipse with
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some frequency Ω
φ
. Second, the ellipse will reside on a plane that passes thru the black

hole, and the ellipse itself will rotate within the plane with some frequency Ω
pp

. And

finally, the plane itself will rotate around the spin axis of the hole with another frequency

Ω
S
. Various harmonics of these frequencies would be present in the gravitational wave

emission coming from the system. As a first test of our time-domain perturbative ap-

proach we will restrict ourselves to circular orbits. Mainly to simplify the calculation,

but there are also physical arguments to support this initial choice. Except for very

eccentric elliptical orbits, one expects that gravitational wave emission would tend to

circularize the orbit as the object spirals down from large distances.

Even objects that are small compared with the central black hole are unable to

maintain stable circular orbits around it. One needs to specify how the particle spirals

inward towards the hole due to loss of energy and angular momentum being radiated

away by gravitational wave emission. Fortunately for most numerical simulations, in

such a mass ratio limit the orbital decay is adiabatic. This means that the time scale for

the particle to complete an orbit around the hole is much smaller than the time scale

in which the parameters of the orbit change due to radiation reaction effects[19]. This

is assuming all other external influences, like drag forces by accreting matter around

the black hole are negligible. In most cases this appears to be true since astrophysicists

believe that current evidence suggests that the majority of such disks develop via advec-

tion dominated accretion flow (ADAF)[34]. Basically, accretion disks of infalling matter

around supermassive black holes are thought to be either thin or slim accretion disks

for mass infall rates close to or above the Eddington rate, Ṁ
Edd

, or ADAF disks for

non-active galactic nuclei. The majority of the suspected supermassive holes that live in
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galactic nuclei should have ADAF accretion disks. In such thick ADAF disks, accord-

ing to Narayan, drag related changes in the orbital phase will be of the order of 10−7

radians per year. This makes drag-related forces negligible and therefore a perturbative

approach to gravitational radiation emission will be more than adequate to model such

systems.

For the case that interests us, namely that of a few M� compact star orbiting in

the strong field region of a 106
M� black hole, one can guess that the object will spend

about a year spiraling from orbits with radii of about 4 M all the way to the ISCO. In

that time, the gravitational waves will be sweeping the frequency band 7 × 10−3Hz ≤

f ≤ 3 × 10−2Hz which will pass right thru LISA’s planned bandwidth of maximum

sensitivity. The waves will be emitted for roughly 105 cycles, which means that there

will be ample opportunity to extract all the relevant system’s parameters from them.

According to the best current estimates[54] there may be enough of these systems to get

about 1 event per year per GPc3 or even 1 per month, if we are lucky.

In a perturbative treatment, one can regard the motion of the particle as that

of a geodesic in the background Kerr spacetime plus a small correction due to a time

changing ”radiation reaction force” fµ
RR

(τ)

dx
µ

dτ
=
dx
µ

dτ

∣∣∣∣∣
Kerr

+
∫
f
µ

RR
(τ) dτ (4.1)

This force fµ
RR

(τ) includes all effects of orbital decay due to emission of gravita-

tional waves up to first order. We will see in Section 4.4 that accurate calculation of such

forces imply evaluating integrals of the ”tail” effects of scattering by the perturbation
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along the past worldline of the particle. This suggests that the ability to evolve the

waves in a time domain perturbative approach will be needed to tackle the problem of

realistic orbital change due to radiation reaction forces.

Geodesic orbits around Kerr black holes can be parametrized by three constants

of motion: E, the energy; L
z
, the z-component of the angular momentum; and Q,

the Carter constant defined by Q = p
2

θ
+ cos2 θ

[
a
2(1− E

2) + csc2 θL2

z

]
. A specific

(E,L
z
, Q) set will be one point in the phase space of all possible Kerr orbits. So an orbit

affected by radiation reaction will have a trajectory (E(t), L
z
(t), Q(t)) on that phase

space.

Let us now consider orbits as far from the horizon of the black hole as to be

considered adiabatic. The change in orbital parameters from one orbit to the next will

be nearly infinitesimal, and the particle will spend many orbits in practically the same

point in the phase space of parameters. One can think of the decay as the passing of one

geodesic orbit to another over the course of various revolutions. Of course, the closer

the particle gets to the hole, the smaller the amount of revolutions one can regard the

particle to spend in any specific geodesic orbit. Eventually, the decay will stop to be

considered as adiabatic and one will need a full-nonlinear prescription for the equations

of motion in the strong field region of the system. For circular or nearly-circular orbits,

this plan of attack can take us all the way to the ISCO without seriously affecting the

accuracy of the simulations.

This forms the basis of Scott Hughes’ methodology for approximately treating the

effects of radiation reaction in extreme mass ratio orbital binaries in the adiabatic limit
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without actually having to calculate the radiation reaction force fµ
RR

(τ)[19]. This will

be the main way in which we will implement radiation reaction in this work.

Basically, the idea is to attempt to read the changes in the parameter set (E,L
z
, Q)

out of the gravitational radiation flux at infinity, and then “move” the orbit to one char-

acterized by

E2 = E1 − δE

L
z2 = L

z1 − δL
z

(4.2)

Q2 = Q1 − δQ

Sadly, this approach fails for most orbits. One can easily read changes in energy

and angular momentum from the wave flux, but this is in most cases impossible for the

change in the Carter Constant Q. The main reason for this difference is that the energy

and angular momentum are quantities linearly constructed from the orbit’s momentum

p
µ, whereas the Carter Constant has a quadratic dependence on the momentum.

For a particle in a general orbit around a Kerr hole, it will have at any one instant

a momentum p
µ

1
. After many orbits, it will radiate away some momentum and later it

can be considered to be in another quasi-equilibrium orbit, but now with momentum p
µ

2
.

We know that the Kerr metric admits a timelike Killing vector T
µ
, an azimuthal Killing

vector Φ
µ
, and a Killing tensor K

µν
[10].

So, for example, the energy of the orbiting particle will be given by E = −T
µ
p
µ.

Therefore the change in energy carried away by the radiation will be
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δE = E2 − E1 = T
µ
p
µ (4.3)

This will depend only on the properties of the radiation extracted out at infinity

or at the horizon, so this quantity, (and the angular momentum), can be extracted from

the evolved ψ4 out of Teukolsky’s equation.

In contrast, the Carter constant will be related to the orbital momentum as Q =

K
µν
p
µ
p
ν . So if one writes the final momentum as pµ

2
= p

µ

1
+ δp

µ one can easily see that

δQ = Q2 −Q1 = 2K
µν
p
µ
δp
ν +K

µν
δp
µ
δp
ν (4.4)

This quantity depends on the local instantaneous change of momentum and can-

not in general be extract out of the emitted gravitational radiation. In fact, if one

recognizes that in a suitable limit the quantity δp
µ
/δτ is the radiation reaction force,

then one can see that

Q̇ = 2K
µν
δp
µ
f
ν

RR
(4.5)

So, in general one cannot escape the fact that one needs to calculate the local

radiation reaction force acting on the orbiting particle to get to the next quasi-equilibrium

orbit, even under the adiabatic regime. But there are 2 special cases in which this

limitation can be overcome. One is the case of equatorial orbits, in which both Q and Q̇

are zero. This is the easiest case to treat from the perturbative standpoint, and many

precise results are available in the current literature [12, 11, 31, 39].
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The second case, which we will analyze in this work, is that of circular (i.e.,

constant Boyer-Lindquist coordinate radius) non-equatorial orbits. Such orbits have a

non-zero Carter Constant, but a powerful result proving that a circular orbit will remain

circular as it decays [20, 51] makes them treatable without detailed knowledge of the

radiation reaction force.

4.2 Radiation reaction treatment for circular orbits

Non-equatorial circular orbits have a non-zero Carter Constant. The object of this

procedure is to establish the equilibrium values for the (E,L
z
, Q) defining parameter set

for such an orbit. Then using the fact that a circular orbit always evolves to another

circular orbit one specifies the change in all three parameters from the gravitational

radiation estimated by the numerical Teukolsky evolution.

The equations describing a geodesic Du
µ

dτ = u
ν
u
µ

;ν
= 0 in the Kerr spacetime are

given by

Σ2
(
dr

dτ

)2
=

[
E(r2 + a

2)− aL
z

]2 −∆
[
r
2 + (L

z
− aE)2 +Q

]
≡ R , (4.6)

Σ2
(
dθ

dτ

)2
= Q− cot2 θL2

z
− a

2 cos2 θ(1− E
2) , (4.7)

Σ
(
dφ

dτ

)
= csc2 θL

z
+ aE

(
r
2 + a

2

∆
− 1

)
−
a
2
L
z

∆
, (4.8)

Σ
(
dt

dτ

)
= E

[
(r2 + a

2)2

∆
− a

2 sin2
θ

]
+ aL

z

(
1− r

2 + a
2

∆

)
. (4.9)
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in which E and L
z

are the orbital energy and angular momentum component

along the axis of rotation per unit mass of the particle, and Q is the Carter Constant

for the orbit (Q = Q
total

/µ
2). A circular orbit satisfies R = R

′ = 0. These conditions

specify that the radius must not change during the orbit and that the particle is always

in a turning point of its radial motion. When one specifies r and L
z
, then the conditions

R = R
′ = 0 make possible the unambiguous determination of Q and E for that same

orbit. These parameters specify a unique circular orbit whose inclination angle [51] will

be given by

cos ι =
L
z√

L2
z

+Q
. (4.10)

For orbits in the equatorial plane of the rotating hole, the inclination is ι = 0 and

Q = 0 for all times. Therefore the conditions R = R
′ = 0 can be used to solve for E and

L
z

as a function of the particle’s radius.

E
p =

1− 2v + qv
3√

1− 3v2 + 2qv3
, (4.11)

L
p

z
= rv

1− 2qv3 + q
2
v
4√

1− 3v2 + 2qv3
, (4.12)

E
r =

1− 2v − qv
3√

1− 3v2 − 2qv3
, (4.13)

L
r

z
= −rv 1 + 2qv3 + q

2
v
4√

1− 3v2 − 2qv3
(4.14)
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E
p and Lp

z
refer to prograde orbits with respect to the black hole spin, and Er &

L
r

z
to the retrograde orbits. Here, v ≡

√
M/r and q ≡ a/M .

To treat non-equatorial circular orbits at some orbital radius r successfully one

starts by noting that these orbits will have less angular momentum than the prograde

equatorial orbit, which must be the most stable of them. Then the conditions R = R
′ = 0

allows one to get simple analytic expressions for Q(r, L
z
) and E(r, L

z
).

E(r, L
z
) =

a
2
L

2

z
(r −M) + r∆

2

aL
z
M(r2 − a2)±∆

√
r5(r − 3M) + a4r(r + M) + a2r2(L2

z
− 2Mr + 2r2)

, (4.15)

Q(r, L
z
) =

(
(a

2
+ r

2
) E(r, L

z
)− aL

z

)2

∆
−
(
r
2

+ a
2
E(r, L

z
)
2
− 2aE(r, L

z
)L

z
+ L

2

z

)
(4.16)

One can see that technically there are two roots for the orbital energy. In our

work, we choose the plus sign in the denominator since the other sign usually gives

energies which are less than the energy of the most strongly bound orbit (except on

strong-field orbits of very rapidly rotating holes)[19]. Therefore, for the circular orbits

of our interest, by fixing r and L
z

one determines the orbit uniquely.

For inclined orbits around rotating holes, the period T
θ

for spanning the inclina-

tion relative to the rotation axis (from θ
min

to θ
max

and back is different, and usually

incommesurate, with the usual orbital period T
φ
. This constitutes a problem for the

frequency domain decompositions of the Teukolsky formalism since it is not entirely

clear which frequency and its harmonics are the fundamental ones used in describing the

orbits and the emitted gravitational radiation. It is customary[12, 19] to perform the
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analysis in a particular frame of reference in which it can be shown that the φ motion

can be Fourier expanded in the θ frequency harmonics.

The last and most important part of this scheme to approximate radiation reaction

in our chosen orbits is to use the prescription of constant circularity to calculate the

changes in the Carter Constant Q, the orbital radius and the inclination angle in an

adiabatic manner. For an orbit to remain circular after decay the prescription is imposed

that Ṙ = 0 and Ṙ′ = 0, where again R is the right hand side expression of the radial

geodesic equation (4.6). Specifically, we have

Ṙ = ṙR
′ + 2EĖr4 +

[
2a2EĖ − 2L

z
L̇
z
− Q̇

]
r
2 + 2

[
Q̇

+2(L̇
z
− aĖ)(L

z
− aE)

]
Mr − a

2
Q̇ = 0, (4.17)

Ṙ′ = ṙR
′′ + 8EĖr3 + 2

[
2a2EĖ − 2L

z
L̇
z
− Q̇

]
r + 2

[
Q̇

+2(L̇
z
− aĖ)(L

z
− aE)

]
M = 0 (4.18)

From this set one can get a solution for Q̇ and ṙ in terms of the flux derived

quantities Ė and L̇
z
. Thus, we may write

Q̇ = −
c11
d
Ė −

c12
d
L̇
z
,

ṙ = −
c21
d
Ė −

c22
d
L̇
z
, (4.19)
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where

c
11

(Q, E, L
z
, r) ≡ −4E(1− E

2
)Mr

6
+ 12EM

2
r
5
− 2E[a

2
(1− E

2
) + 3(L

2

z
+ Q)]Mr

4

+8[a
2
E(2− E

2
) + E(L

2

z
+ Q)− 2aL

z
]M

2
r
3

−2a[aE[6M
2

+ L
2

z
+ Q + a

2
(1− E

2
)]− 6M

2
L

z
]Mr

2

+4a
2
E[Q + (L

z
− aE)

2
]M

2
r − 4a(L

z
− aE)[Q + (L

z
− aE)

2
]M

3
,

c
12

(Q, E, L
z
, r) ≡ −4L

z
(1− E

2
)Mr

4
+ 16(1− E

2
)(L

z
− aE)M

2
r
3

+2
[
L

z
[a

2
(1− E

2
) + L

2

z
+ Q]− 6M

2
(L

z
− aE)

]
Mr

2

−4L
z

[
Q + (L

z
− aE)

2
]
M

2
r + 4(L

z
− aE)

[
Q + (L

z
− aE)

2
]
M

3
,

c
21

(Q, E, L
z
, r) ≡ 2Er

5
− 6EMr

4
+ 4a

2
Er

3
+ 2a(L

z
− 2aE)Mr

2
+ 2a

4
Er − 2a

3
(L

z
− aE)M ,

c
22

(Q, E, L
z
, r) ≡ 2aEMr

2
− 2a

2
L

z
r + 2a

2
(L

z
− aE)M ,

d(Q, E, L
z
, r) ≡ −2(1− E

2
)Mr

4
+ 8(1− E

2
)M

2
r
3

+
[
Q + L

2

z
− 5a

2
(1− E

2
)− 6M

2
]
Mr

2

+2
[
a
2
(3− E

2
) + 2aEL

z
− (L

2

z
+ Q)

]
M

2
r

+2(L
2

z
+ Q)M

3
− 4aEL

z
M

3
+ a

2
(2E

2
M

2
− L

2

z
−Q)M − a

4
(1− E

2
)M .

By determining Ė and L̇
z
, we determine Q̇ and ṙ, fully fixing the evolution of the

particle’s orbit. In particular, the rate of change of the inclination angle is

ι̇ = −d(cos ι)/dt

1− cos2 ι
, (4.20)

where

d(cos ι)
dt

=
1√

L2
z

+Q

L̇z −
(
L
z

2

)
2L
z
L̇
z

+ Q̇

L2
z

+Q

 . (4.21)
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4.3 Numerical implementation of the circular orbit radiation reaction

approximation

Our actual computational scheme involves (a) a Mathematica 3.0 notebook to

compute the parameters that characterize the orbit, (b) a callable FORTRAN code

to integrate the geodesic trajectory of the particle in the numerical 2-D grid (Boyer-

Lindquist r and θ coordinates in the background Kerr spacetime) as well as the eimϕ

mode coefficients, (c) a FORTRAN routine to calculate the source term according to

Eq.(3.5) at each timestep , (d) the main code to perform the numerical Teukolsky evo-

lution in time; and finally, (e) another set of Mathematica tools to calculate how much

energy and angular momentum has been radiated by the orbit and figure out by how

much to alter the orbit parameters to get to next circular orbit in the sequence.

The geodesic integrator numerically integrates the Kerr geodesic equations (4.6 -

4.9) at each timestep and uses as input parameters the following quantities

1. r - the constant Boyer-Lindquist radius of the orbit.

2. σ
r

and σ
θ

- the radial and angular widths of the gaussian distributions which

simulate the particle location in the computational domain. These are specified in

terms of the number of gridcells that they will span.

3. L
z

- the axial component of the angular momentum of the inclined circular orbit.

4. θ
max

- the turning point of the θ coordinate of the orbit, (i.e. the maximum

inclination angle of the orbit, which is closely related to the ι of Eq. (4.10) but is

not exactly equal to it).
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To specify initial data for a sequence of orbits one starts by choosing the starting

radius and inclination angle one wants for the initial orbit. For that radial distance one

calculates the value of L
z

for the equatorial prograde orbit according to Eq. (4.12). This

will be the upper bound value that L
z

can attain for a circular orbit at that distance,

and the actual value for an inclined orbit will be less than that. The Mathematica

program implements a Newton-Rhapson search algorithm in the following manner: Start

by reducing the value of L
z

by an arbitrary set amount. Then calculate the values of

E and Q according to equations (4.15) and (4.16). With the values of L
z

and Q, use

Eq. (4.10) to find the corresponding ι. Halve the difference ∆L
z

used and apply to the

new L
z

value so as to approach the determined inclination angle one wants. Iterate this

procedure until one gets within a tolerance of about ε ∼ 10−7 of the starting value.

These results are fed to the source term subroutine which at each timestep of the

evolution computes the source term using a discretization of Eq.(3.5) over the whole grid

and solves the Teukolsky equation for the value of the ψ4 field for at least 3 or more

complete orbits. The programs monitors the value of ψ4 at a set point in the grid far

from the horizon and computes the energy and angular momentum fluxes in gravitational

radiation according to the formulas[8, 22] :

dE
dt

= lim
r→∞

{
1

4πr6

∫
Ω

dΩ

∣∣∣∣∣
∫
t

−∞
dt̃ ψ4(t̃, r, θ, ϕ)

∣∣∣∣∣
2}

(4.22)

dL
z

dt
= − lim

r→∞

{
1

4πr6
Re

[∫
Ω

dΩ

(
∂
ϕ

∫
t

−∞
dt̃ ψ4(t̃, r, θ, ϕ)

)

×

(∫
t

−∞
dt′
∫
t
′

−∞
dt̃ ψ̄4(t̃, r, θ, ϕ)

)]}
dΩ = sin θdϑdϕ (4.23)
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The code produces output files listing (a) the real and imaginary parts of the

ψ4 field at representative locations of the 2-D grid, and (b) the computed energy and

angular momentum fluxes of Eqs.(4.22 - 4.23) for values of m from 1 to 8. And all this

is done periodically at preselected times along the length of the simulation for a circular

orbital geodesic.

The energy and angular momentum fluxes are averaged numerically over the time

interval in which the particle completed as many orbits as the duration of the simulation

allowed it. These fluxes are multiplied by the time it takes for 20-30 orbits and that

energy and angular momentum change is used in a discretized version of Eq.(4.19) and

(4.20) to get the corresponding changes in Q and ι due to the approximated effects of

radiation reaction. With these new parameters we set up the next circular orbit on the

sequence and in principle we can continue safely all the way down to the ISCO, although

near it we should reduce the number of orbits used to calculate the parameter changes

to maintain a similar level of accuracy. This method has the capacity to maintain as

high a calculational precision as one needs by increasing the resolution of the grid and

devoting more computer resources to the task. In this dissertation we do not intend to

achieve the same level of precision as those of Ref. [11] and [18], but only to demonstrate

the feasibility of this method to tackle the problem of radiation reaction in perturbative

orbits, since as we will see in the next section almost all current proposals to understand

and calculate the actual radiation reaction forces need to integrate in time along the past

light cone of the particle.
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4.4 More general prescriptions to calculate reaction forces for a parti-

cle

Using the preceding computational schemes one can approximate the effects of

radiation reaction by energy balance considerations for equatorial or circular orbits only,

so those are the only cases we have tackled in our research project. This severe limitation

has been encountered by all studies of particle motion around black holes[18] since to

treat more general orbital trajectories one would need a workable expression for Q̇ and

as we have just seen in Eq./,(4.5) one must know the local radiation reaction force fµ
RR

to get it.

In recent years this problem has interested many researchers and quite a few

proposals have been presented for understanding and trying to define rigorously the

leading order correction to the equation of motion of a particle moving in a geodesic of

a background vacuum black hole spacetime. One proposal of Mino et al [32] involves

a curved spacetime generalization of the well-known formalism of DeWitt and Brehme

[16] to treat the electromagnetic self-force of an electrically charged particle. In the

straightforward point particle limit this has unsurmountable conceptual difficulties as

the stress-energy tensor of both the electromagnetic and gravitational fields becomes

singular and therefore any other matter fields comprising the body must also become

singular in order to ”hold the particle together”. So a sensible point particle limit in

which the size of the body goes to zero while maintaining the charge and the mass of the

body does not exist. What Mino et al propose is the construction of a conserved rank two

symmetric tensor that will be integrated inside the interior of a world tube surrounding
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the orbit. This tensor will encode the stress-energy of the matter field and a carefully

defined trace reversed metric perturbation due to the presence of the particle on top

of the background hole metric. Integrations of the tensor divergence over the top and

bottom of an infinitesimal length of the tube give the definition of the particle momenta

at both ends and the difference between them will be the change of momentum during

that interval. This has to be equated to the momentum flow given by the integration

of the tensor divergence over the surface of the tube. That is the basis of obtaining the

equation of motion.

This result is not entirely rigorous since a crucial step in obtaining the final

result is the use of an ansatz based on the assumption that in the point particle limit the

momentum is always proportional to the 4-velocity of the particle. In the electromagnetic

case where one can consider the extended charge distribution of the body to be supported

by another force which will not be affected by the self-field of the particle and there will

be no distortions in this distribution due to the radiation reaction this is justified, but

one cannot be sure of this for the gravitational case.

The main equation of motion in this proposal looks like

mz̈
α
(τ) = −m

(
1
2
ż
α
ż
β
ż
γ
ż
δ + g

αβ
ż
γ
ż
δ − 1

2
g
αδ
ż
β
ż
γ

−1
4
g
βγ
ż
α
ż
δ − 1

4
− 1

4
g
αδ
g
βγ
)

(τ)ψ(υ)βγ;δ(z(τ)) (4.24)

where basically the quantity ψ(υ)βγ;δ(z(τ)) is the ”tail-term” part of the trace

reversed metric perturbation mentioned earlier. This has an unknown function defined
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in term of the Green function of the linearized Einstein equation. This fact and the

inherent difficulties of computationally implementing this tail-term integrations in the

past section of the particle worldline in a generalized gauge choice is what has precluded

the use of these formulas in actual studies of inclined and/or eccentric particle orbits

around rotating black holes.

Quinn and Wald [45, 46] have also analyzed the problem of radiation reaction

in a particle by postulating an axiomatic approach that tries to regularize the Green

function of the linearized Einstein equation at the level in which the perturbed metric

due to the particle enters at first order. They introduce a ”comparison axiom” that more

or less states that if two particles of the same mass m have the same four-acceleration

on different spacetimes then the difference of their gravitational forces can be found by

an effective integral expression averaged over a small sphere around the point in their

worldlines where the comparison is made. This eliminates the singular part of the self-

field of the particle and can be manipulated to give equations of motion that appear to

agree substantially with those of Mino et al.

The main point here is that even when there are still doubts about energy con-

servation and questions of rigor in the derivation of the linearized equations of motion,

these approaches would need to calculate the radiation reaction forces by performing

”tail-term” integrations in the past worldline of the particle. So in the strong-field re-

gion a method to evolve the path of the particle in time as it orbit decays would be the

ideal setting in which to finally implement these prescriptions in a numerically feasible

way.
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Chapter 5

Numerical Results

5.1 Reproduction of earlier frequency-based results

The main purpose of this research is to provide an alternative method to handle

particle orbits around rotating black holes. This will be done in a novel way by pro-

viding a good approximation to the matter source term in the Teukolsky formalism in

a way that could be used in the future as a practical means of providing for numerical

implementations of tail-term integrals needed in most prescriptions of general radiation

reaction forces for such orbits.

Since equatorial orbits have been treated with great precision in the frequency

domain method, it is important to show that our method gives comparable results if one

looks at quantities like the average gravitational energy flux at large distances from the

horizon. Finn and Thorne [18] recently published a comprehensive work that tabulates

and includes all previous results for high-precision gravitational wave flux and wave am-

plitudes coming from many kinds of representative compact objects in equatorial circular

orbits around massive central black holes that LISA might detect with confidence. In

Table 5.1 we make representative comparisons with the results of formulas (3.8) and

(3.10) of that paper using the precise relativistic corrections included in Tables III - VI

that they also provide.
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We can see that there is substantial agreement with those results after we average

the calculated energy flux using Eq. (4.22) at a grid point located at r = 100M and

θ = π, which as a good an approximation to infinity as we are going to get in this

algorithm. We have verified that small changes in model parameters like the width of

the gaussian distribution, changing the location where the Teukolsky wave is measured,

or the resolution of the grid do not change the results appreciably. The values computed

in Table 5.1 with our code represent the optimum value for such parameters.

For the case of inclined orbits we compare the averaged energy flux output of our

code with the content of Figures (4) and (9) of Hughes’ paper[19] for the fiducial case of

r = 7M , spin angular momentum a = 0.95 and ι = 62.43◦. The results are in good semi-

quantitative agreement since the exact values are not published in that paper and one

has to sum over the values of dEdt for a few relevant values of the angular decomposition

numbers l and m and our result comes from averaging the flux in time for one direction

in space.

5.2 Convergence issues

We used the case of equatorial orbits around a non-rotating hole to verify the valid-

ity of our basic approach since there are many precise studies of the resulting waveforms

and radiated energy fluxes emitted in this case, both numerically and analytically.[39, 19,

11, 31] It is also much easier to construct the source term since most of the terms in Eq.

(3.5) vanish for such a case and an earlier, smaller version of the code ran much faster to

do these kinds of tests. We also verified using computer algebra and a few experiments
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Ratio between Finn-Thorne flux
Parameters Mode and our average flux
a = 0.9, m = 2 12.7007

r = 1.4 r
isco

m = 3 2.96379
a = 0.9, m = 2 2.10242
r = 3 r

isco
m = 3 0.918952

a = 0.9, m = 2 0.70204
r = 5 r

isco
m = 3 0.299905

a = 0.9, m = 2 0.522219
r = 6 r

isco
m = 3 0.215364

a = 0.5, m = 2 11.3851
r = 1.4 r

isco
m = 3 4.93138

a = 0.5, m = 2 2.67986
r = 2.5 r

isco
m = 3 1.16467

a = 0.5, m = 2 1.91827
r = 3 r

isco
m = 3 0.808455

a = 0.5, m = 2 1.51198
r = 5 r

isco
m = 3 0.517028

a = 0.5, m = 2 0.699328
r = 6 r

isco
m = 3 0.228741

Table 5.1. Comparisons of gravitational wave energy fluxes detected at infinity using
the frequency domain solution of the Teukolsky-Sasaki-Nakamura equation Ė∞m

as
calculated in Ref.[18] with the results measured numerically using the implementation
of Eq. (4.22) at r = 100M while evolving the Teukolsky equation in the time domain
under the ”particle-as -a-gaussian-distribution” approximation discussed here.
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that the full version of the code agreed with this leaner version for the equatorial orbits

around Schwarzschild cases.

Our approach was to compare the average energy flux emitted after a few or-

bits (without imposing changes due to radiation reaction) with the very precise average

energy flux tables calculated by numerically integrating the Teukolsky equation in the

frequency domain that appear in Ref.[11], and seeing how well does our evolution matches

it as we make σ → 0 up to the point where the code is still able to adequately resolve

both the gaussian and its first two spatial derivatives. The gaussians and their derivatives

used in Eq. (3.5) are calculated analytically in the code, and it is found that gaussian

widths σ of a relative size as small as 0.8 gridpoints produce a source term that can be

adequately resolved by the discrete grid used in the simulation.

The shape of Figure 5.1 indicate that for very small widths of the gaussian, the

approximation of replacing a Delta function by a narrow gaussian peak seems to hold

as expected. Therefore the results are independent of the actual width of the gaussian

distribution used in the calculation.

For other evolutions in inclined circular orbits to demonstrate the use of the

technique to follow a particle as the orbit decays under radiation reaction we used this

minimum value of σ/∆x = 0.8, which we have verified that still provides adequate

resolution of the gaussian (and its first two derivatives) on the computational grid.

We also made standard convergence tests by assuming that the numerical values

included errors that decrease as a power of the grid spacing h. Specifically we assume

that the value of the Teukolsky function Ψ at any point in the computational domain

goes like
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Ė
NTC

σ/dx

Dependence of outgoing energy flux
with gaussian width for m = 2

♦ ♦ ♦ ♦ ♦ ♦
♦

♦

♦

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

1 1.5 2 2.5 3 3.5 4

Ė
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Fig. 5.1. Convergence of the gaussian approximation. Plotted here is the ratio of the high
precision results of Ref. [18] (denoted here as Ė

FT
) and the average energy flux radiated for

a circular equatorial orbit around a Schwarzschild hole ( Ė
NTC

) as a function of the relative
gaussian width used in our method of evolving the Teukolsky equation in the time domain. This
is for a sample case consisting of a circular orbit around a hole of a = 0.9 at r = 5 r

isco
.
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Ψ(h) = Ψ
exact

+ Ch
a + O(ha+1) (5.1)

Therefore, if we run at various resolutions we can get a quantity C that measures

the order of convergence a of the code. This is defined as

C =

∥∥∥∥∥∥
Ψ(4h) −Ψ(2h)
Ψ(2h) −Ψ(h)

∥∥∥∥∥∥
2

(5.2)

In Figure 5.2 we show for a representative run simulating a particle of µ = 0.005M

on a circular equatorial orbit at r = 7M and for the multipole m = 2, how the 2-norm

of the quantity C shows second order convergence of the algorithm.

5.3 Gravitational Energy Flux and Teukolsky waveforms

In this section we show representative results for the evolution of the Teukolsky

waves and the energy flux measured far from the black hole for various representative

cases of circular orbits around various values for the black hole spin a, the inclination

angle of the orbit ι, and the orbital radii r. Animated versions of these and similar

evolutions will be available on the Web version of this dissertation[28].

These results aim to show what particle orbit perturbative evolutions look like,

and more importantly to demonstrate in practice the capabilities of the method and are

not meant to match or surpass the accuracy of similar studies done in the frequency

domain. In the next chapter, we will discuss how this numerical framework for analysis

of non-homogeneous black hole perturbative evolutions can be used and what technical
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Fig. 5.2. 2-norm of the convergence ratio C of Eq. (5.2) calculated for Re[Ψ] at a
Boyer-Lindquist radial distance of r = 80M for three simulations with radial resolutions
of 2000, 4000 and 8000 gridpoints.
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details need to be solved and/or improved to achieve comparable accuracies in those

future results.

5.3.1 Equatorial orbits

The following figures show the real and imaginary parts of the Teukolsky function

Φ at various times in the orbit of radius r = 5 r
isco

for a representative value of m = 2.

This is for a particle of µ = 0.01M around a black hole of spin a = 0.9.
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The next set figures show the real and imaginary parts of the Teukolsky function

Φ at various times for another type of equatorial orbit. This time one of radius r = 3 r
isco

for a representative value of m = 2. This is for a particle of µ = 0.01M around a black

hole of spin a = 0.5.
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Fig. 5.3. The real part of the numerical Teukolsky function Φ for the m = 2 mode of
an equatorial orbit of radius r = 5 r

isco
at different times. The particle parameters are

µ = 0.01M around a black hole of spin a = 0.9.
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Fig. 5.4. This figure shows the value of the function Φ as a function of Boyer-Lindquist
time at a distance of r = 100M and in the equatorial plane of the black hole for the
same parameters of Fig. 5.3.
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Fig. 5.5. Energy flux measured in the equatorial plane at a distance of 100M from the
horizon for the same case of the two preceding figures.
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Fig. 5.6. The real part of the numerical Teukolsky function Φ for the m = 2 mode of
an equatorial orbit of radius r = 3 r

isco
at different times. The particle parameters are

µ = 0.01M around a black hole of spin a = 0.5.
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Fig. 5.7. This figure shows the value of the function Φ as a function of Boyer-Lindquist
time for m = 2 at a distance of r = 100M and in the equatorial plane of the black hole
for the same parameters as in Fig. 5.6.



71

7.8e− 10

7.85e− 10

7.9e− 10

7.95e− 10

8e− 10

8.05e− 10

8.1e− 10

300 400 500 600 700 800

Ė
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5.3.2 Inclined orbits

Circular orbits that do not lie on the equatorial plane of a Kerr hole have only

been done very recently by Hughes[19] using the ”circular-to-circular” radiation reaction

that forms the basis of our present analysis and that we discussed extensively on the

last chapter. Here we present Teukolsky waveforms and energy flux graphs that were

produced by our code and a graph illustrating the wave amplitude that would be seen

by LISA from such an orbit.

For the representative orbital decay shown here we used a starting point of orbital

radius r = 7M , black hole spin a = 0.95M and angle of inclination ι = 62.43◦. The

procedure followed the discussion already given in Section 4.3. Specifically, we do a

circular orbit by specifying a circular geodesic trajectory for the peak of the gaussian

mass distribution that simulates the particle and evolving for 4-10 orbits at a radial

resolution of 6000 points and an angular resolution of 20 points. We output tables of the

Teukolsky function Φ, the energy flux, and the angular momentum flux of the outgoing

wave at a distance of 100M at every 600 timesteps (corresponding to a time interval of

20.5M). Each table has the value of those quantities at radial intervals of 8.2M and at

each angular gridpoint.

We average the energy and angular momentum fluxes for the whole orbits that

occur in the time window defined after the spurious burst that occurs due to the unphys-

ical choice of initial data has passed and before some of it has bounced off the outer edge

of the grid and comes back to the point where this quantity is ”measured”. The changes

in the energy, angular momentum, Carter constant and inclination angle of the orbit
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are calculated by multiplying those 〈dEdt 〉 and 〈dJdt 〉 by the time required to complete

5-10 full orbits at that radius and using Eqs. 4.15, 4.16, and 4.20. We change the input

parameter set {r, L
z
, E,Q, θ

max
} by those amounts and that defines the next circular

orbit in the decay sequence that we are studying. In Figure 5.9 we depict the evolution

of the Teukolsky function for 5 of those decay sequences by pasting together the data

that the program outputs in each of those separate runs.

Because we closely followed Hughes’ method of emulating radiation reaction, and

we tested our code’s handling of inclined orbits with one of the cases he treated in the

frequency domain, we saw fit to include here three graphs from Ref. [19]. They are

meant to illustrate the way in which inclination angles change due to radiation reaction,

and the gravitational wave signal that would be seen by LISA for our fiducial starting

r = 7M and ι = 62.43◦ inclined orbit written in the conventional h× and h+ amplitude

form.
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Fig. 5.9. The real part of the numerical Teukolsky function Φ as a function of time for
a sequence of circular orbits starting at r = 7M , a = 0.95 and ι = 62.43◦ for a particle
of µ = 0.001 connected together by radiation reaction.
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Fig. 5.10. Effects of radiation reaction for a black hole of a = 0.8. The dotted line is
the maximum allowed inclination angle; any orbit beyond that line will be unstable and
plunge into the hole. Each arrow is proportional to the vector [(M/µ)ṙ, (M/µ)ι̇]. The
arrow indicates the direction in phase space in which the orbit will move after radiation
reaction.
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Fig. 5.11. The rate of change of the orbit inclination (ι̇) as a function of the initial
inclination angle for various values of the central black hole spin a. All curves are for a
circular orbit of radius r = 10M .
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Fig. 5.12. Gravitational waveforms for the case treated here of r = 7M and ι = 62.43◦

about a black hole of a = 0.95M . These are seen at the equatorial plane of the hole.
One can see many prominent and sharp features indicating the strong contribution of
many harmonics of the fundamental frequencies Ω

θ
and Ω

ϕ
.
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Chapter 6

Conclusions

6.1 Particle motion around supermassive black holes and future LISA

observations

The particle limit is a very important clue for unraveling the two-body problem

in General Relativity and for providing valuable insights for attacking the ”holy grail”

of Numerical Relativity, the theoretical solution of a general asymmetric binary black

hole collision. Perturbative analysis of astrophysically realistic particle orbits have been

impossible so far because there is no computationally useful prescription for calculating

Q̇, and this is absolutely necessary for modeling the motion of the particle in the strong

field region near the horizon where Post-Newtonian methods may not be reliable and

where for rapidly rotating central holes the particle may linger for thousands of orbits,

and where the bulk of the detectable useful signal is expected to be.

LISA is expected to fly in a decade or so, and joint discussions currently underway

between NASA and ESA give hope to many relativists that the prospects for the mission

are quite optimistic. Then, the problem of theoretically modeling inclined elliptic particle

orbits around supermassive holes takes a note of increased urgency since the data is

building up indicating that such huge 106 − 108
M� are common in the center of Active

Galactic Nuclei (AGNs) at least. Finn and Thorne [18] have published a paper analyzing

the likelihood and frequency distribution of such extreme mass-ratio binary systems and
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how their signal-to-noise ratios would make them ideal candidates for easy detection with

LISA. They base their analysis on the output calculated for circular equatorial orbits

and the outlook looks quite good and makes one hopeful that more general orbits will

produce easily waves on a regular basis with a much richer structure and with lots of

interesting information about the strong-field region of the black hole encoded in their

signal.

The final pieces needed for completing a theoretical model of general particle

orbits would be to fully develop a computationally viable prescription for calculating

local radiation reaction forces and using that information to move form one orbit to next

as long as the particle moves under conditions in which the adabiatic approximation is

valid. Also one needs to model the rapid plunge of the particle into the black hole once

the ISCO is crossed, and it would be nice to do that in a perturbative fashion.

There has been considerable advances along those lines of research. We discussed

in detail in Section 4.4 how recent proposals have been proposed to understand how

geodesic orbits change due to the local self-force of the field of the particle to first order.

To incorporate radiation reaction in a numerical simulation of matter around black holes

would seem to require the use of time-domain methods to evolve perturbations as the

path of the particle changes more and more rapidly as it enters the strong-field region

near the horizon, or at the very least that would seem to be the more natural way to

proceed at this stage.

Progress in the ”plunge” of the problem has been achieved recently by using the

”close-limit” approximation[3]. Baker et al have used full numerical relativity in the

very beginning of a set of runs with various members of a set whose initial data for



80

equal-mass black holes have increasing values for the linear momenta and start very

near the ISCO and testing when the evolution can be switched with confidence to a

perturbative treatment and obtain plausible plunge waveforms. They also study how

the linearization time (the time where one can switch from full numerical evolutions to

the close-limit treatment with confidence) varies with the holes of the momentum.

More applicable to our method is a work done by Ori and Thorne[36] in which

they derive an expression for the equation of motion of a particle in a circular equatorial

orbit in the ”transition regime” very near the ISCO where the orbit goes from that of

adiabatically slow changes from one circular orbit to the next to the more rapid and

essentially geodesic plunge into the hole. They rewrite the geodesic equation for radial

motion in terms of an effective potential that basically depends on the radial distance

of the particle and on the difference ξ ≡ L̃ − L̃
isco

of its dimensionless orbital angular

momentum from that of the ISCO. By calculating how the location of the minimum of

this effective potential changes as ξ decreases after the emission of radiation they can

write an equation of motion for this transition regime which looks like

d
2
X

dT 2 = −X2 − T (6.1)

where the quantities X and T are defined in terms of the radial difference R ≡

r̃ − r̃
isco

and the normalized proper time τ̃ as
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X =
R

η2/5R
o

, T =
τ̃ η

1/5

τ
o

; (6.2)

R
o

= (βκ)2/5α−3/5
, τ

o
= (αβκ)−1/5 ; (6.3)

α =
1
4

(
∂
3
V (r̃, Ẽ, L̃)

∂r̃3

)
isco

, (6.4)

β = −1
2

(
∂
2
V (r̃, Ẽ, L̃)
∂L̃∂r̃

+ Ω̃
∂
2
V (r̃, Ẽ, L̃)
∂Ẽ∂r̃

)
isco

. (6.5)

κ =
32
5

Ω̃7/3

isco

1 + a/r̃
3/2

isco√
1− 3/r̃isco + 2a/r̃3/2

isco

Ėisco ; (6.6)

We did not use this equation of motion in this work because it is only applicable

to circular equatorial orbits, but it certainly seems feasible to extend the idea of writing

an effective potential for the 2-D geodesic motion of the r and θ coordinate directions

and to get similar equations of motion for the transition regime of inclined circular orbits

at least. This would be relatively easy to incorporate in our code as it would only need

to switch from the subroutine which now calculates the position of the particle using the

geodesic equations (4.6) - (4.9) to one written to update the position using the effective

equation of motion in the transition regime. This way one could in principle follow a

particle in the strong-field region from the outer adiabatic regime to the ISCO to the

plunge and get accurate gravitational waveforms at infinity.
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6.2 Directions of future research

There remains some more work to be done in this time-domain approach to evolv-

ing matter source motion around rotating black holes using this approximation of substi-

tuting narrow gaussian distributions for the location of the particles in the computational

grid. To get comparable accuracies to those achieved on frequency domain calculations

such as Post-Newtonian methods or the Teukolsky-Sasaki-Nakamura formulation we need

to deal with the following technical issues:

(a) correctly rewriting the Teukolsky potential of Eq. (2.39) because for high

values of m the potential grows too rapidly near θ ∼ 0 and in the region of the maximum

of ∂Ṽ
∂r this produces exponentially growing spikes that contaminate the waves in the

interior rapidly and eventually crash the code. To get better accuracies we need much

more values of m that the ones we are presently using.

(b) the choice of initial data. We have a simple but unphysical choice of initial

data which makes the particle appear out of nowhere and therefore producing a huge

burst of ”junk” radiation that we basically ignore by letting it pass thru the point where

we are going to monitor the correct evolution of the system and discarding that data and

looking only at the waves produced by the stable particle orbits. To get many orbits and

to get good averages not only in time but also in various spatial directions we need to

define a very large grid that is there mostly to have this burst proceed unmolested without

”bouncing” on the outer boundaries of the domain or else the boundary reflections from

the burst would contaminate the waveforms coming from the particle orbits. Getting

better initial data in the spirit of those proposed in Ref. [29] may help in reducing this
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initial burst and therefore having the bulk of the computational resources being more

efficiently used in the region where the waves are generated and/or monitored.

The main conclusion of this research is that the method appears feasible, and it

looks like there are no unsurmountable problems in its basic conception and implemen-

tation. One is optimistic that it can be successfully adapted to help in the problem of

implementing numerical simulations in which radiation reaction is taken into account,

even for general elliptical orbits around rapidly rotating holes.

Other ideas that could be explored with the use of this numerical code in the near

future include:

1. Update the equation of motion to include the effects of spinning test particles.

The basic equations of motion of a spinning test particles in curved spacetimes

have been formulated by Papapetrou and Dixon [17, 38]. Suzuki and Maeda [55]

have studied the effects of a non-zero spin tensor in the stability of circular orbits

around Kerr black holes and how the location of the ISCO is affected by the spin

of the particle. By modifying the geodesic equations of motion, we could include

spin effects to get more realistic waveform evolutions.

2. Study in more detail how practical it would be to attempt to write routines that

will approximate the ”tail-term” integrations in equations of motion like those of

Quinn and Wald [45] and how to get estimates for Q̇ from the comparison of purely

geodesic orbits and those that could be evolved from these type of prescriptions.

It would be very interesting to see what kinds of accuracy one could get with such

approximations.
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3. If the above ideas result practical, one could tackle the problem of extending the

analysis of Finn and Thorne [18] to catalog relativistic corrections to quadrupole

radiation formulae, study how long will waveforms last before the particle S/N

ratio falls below the noise curve for LISA, and estimate what kinds of frequency

bandwidths will those inclined systems sweep through in the last year before the

hole captures the compact object.

We have described in detail our research in constructing the matter source term for

a particle moving in the in the strong field region of a Kerr black hole. This was

done using a previously successful approximation for locating the point particle in

the discrete grid of a numerical simulation by substituting the delta function that

describes its location in the source term by a narrow gaussian distribution whose

derivatives can still be resolved at the resolution of the grid used in the program.

The methodology seems consistent and with a suitable extrapolation procedure

can reproduce adequately earlier results for treatable orbits done in the frequency

domain, bolstering our confidence in the results obtained at this stage. If some

technical issues that hamper the algorithm’s accuracy can be resolved successfully,

the code seems to be ideally suited to tackle the still unsolvable problem of model-

ing inclined elliptical orbits all the way to the innermost stable orbit and beyond.

In principle, it could also be used to study the effects of accretion disks for grav-

itational wave sources by coupling it to fully relativistic hydrodynamics using the

Smoothed Particle Hydrodynamics (SPH) routines that have been previously used

in the CGPG group [27].
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